
International Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business Research
(IJCBR)(IJCBR)(IJCBR)(IJCBR)

ISSN (Online) : 22ISSN (Online) : 22ISSN (Online) : 22ISSN (Online) : 2229292929----6166616661666166
VOLUME 5 ISSUE 1 JANUARY 2014

GROUPTHINK IN SOFTWARE ENGINEERING

Michael Scott Brown

Project Director, Software Engineering

University of Maryland University College

Abstract: This brief paper outlines research in software engineering that matches

characteristics of GroupThink. GroupThink is an issue that occurs in groups that leads to

incorrect decision-making. GroupThink could be a cause of software defects, project failure

rates and other quality issues in software engineering. The root cause of GroupThink is group

cohesion. But there are many benefits of group cohesion, so the elimination of group cohesion

is not a solution. Much research has been done to determine how to prevent GroupThink

without reducing group cohesion. Some solutions to the problem of GroupThink will also be

presented. A number of these techniques are included in software engineering best practices,

while others should be future research.

Keywords: Software Engineering, GroupThink, Peopleware,

1. Introduction

It is widely believed that the success or failure of a software project is greatly dependent upon the

personnel working on it. Skilled personnel working together can produce reliable software within

budget. But lack of the right combination of people can produce failure. This factor in building

software, typically referred to as Peopleware, justifies research into how people behave in software

engineering groups.

A number of studies have shown that a significant percentage of software engineering projects fail.

Failure can be terminating the project, greatly exceeding budget or significantly reducing the feature

International Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business Research
(IJCBR)(IJCBR)(IJCBR)(IJCBR)

ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229----6166616661666166
VOLUME 5 ISSUE 1 JANUARY 2014

set. Project failure can cause enormous financial strain on organizations that spend money for

software and do not receive the benefits of it. This is often referred to as the Software Crisis.

This paper describes a problem, called GroupThink (Janis, 1982; Janis, 1972), which occurs in many

groups that make decisions. GroupThink is a phenomenon in which group cohesion can adversely

affect the group’s ability to make good decisions. Some authors have stated that software engineering

groups suffer from GroupThink (Kontio, et al, 2004; Salinger, et al., 2008). But these papers do not go

into detail GroupThink diagnosis techniques outlined by Janus (Janus, 1982). This paper will describe

and analyze current research that supports that assertion.

Most research in GroupThink is in the form of case studies (Janus, 1982). These studies look at

specific groups that made poor decisions and through analysis determine that they suffer from

GroupThink. Some common examples are the Kennedy administration’s decision to support the Bay

of Big invasion; NASA decision to launch the Space Shuttle Challenger and the Nixon

administration’s decision to cover up Watergate. This paper takes a slightly different approach.

Instead of focusing on a specific group and a single decision-making process, this paper focuses on a

generic group, that group being software development teams. After decades of research in Peopleware

we have learned a lot about how these teams function.

2. GroupThink

GroupThink was first introduced by Irving Janis in 1972 and is a failure that some groups exhibit that

prevents them from making good decisions. Many factors can lead to GroupThink, however it is

primarily an issue with group cohesion.

2.1. Group Cohesion

Group cohesion is a phenomenon that has been observed in groups from the beginning of the study of

group dynamics. Although there is some differing of opinions, commonly group cohesion is thought

of as "the degree to which the members of a group desire to remain in the group."(Cartwright &

Zander, 1968) High group cohesion can produce many benefits including: the ability to retain

members; the participation and loyalty of members; ownership of the product and the feeling of

security by the members (Cartwright & Zander, 1968; DeMarco & Lister, 1987).

International Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business Research
(IJCBR)(IJCBR)(IJCBR)(IJCBR)

ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229----6166616661666166
VOLUME 5 ISSUE 1 JANUARY 2014

Group cohesion should be a goal of every software development project manager. Cohesion has many

positive effects on software development and prominent members of the software community

promote it as a way to increase development (Demarco & Lister, 1987). Cohesion seems logically to

be a positive group characteristic. Cohesiveness, in any group, helps to reduced anxiety, heightened

self-esteem, and retains members (Cartwright & Zander, 1968). With current software development

being a high anxiety, high turnover occupation, group cohesion is thought to be a solution to many

problems.

2.2. GroupThink

Groupthink is a term used to describe the "mode of thinking that people engage in when they are

deeply involved in a cohesive in-group, when the members' striving for unanimity override their

motivation to realistically appraise alternative courses of action." (Janus, 1972) Members of the group

concentrate on maintaining group cohesion and avoid conflict. This phenomenon occurs all the time

and is generally unnoticed. Members are generally unaware of Groupthink when it happens. Table 1

shows the primary conditions that breed GroupThink (Janus, 1972). It is easy to see that many

software engineering groups exhibit these conditions.

 Table 1 Condition that breed GroupThink

Conditions that Breed GroupThink

High group cohesion

Group has insulation from judgment by elements outside of the group while the

group process is going on

Leader of the group promotes his/her own ideas

After examining the conditions that can cause GroupThink, Janus presents characteristics of

GroupThink. By analyzing a group using these characteristics it can be determined if the group suffers

from GroupThink. Table 2 shows these three characteristics.

 Table 2 Characteristics of GroupThink

International Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business Research
(IJCBR)(IJCBR)(IJCBR)(IJCBR)

ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229----6166616661666166
VOLUME 5 ISSUE 1 JANUARY 2014

Characteristics of GroupThink

Overestimations of the group

Closed-mindedness

Pressure toward uniformity

GroupThink is a condition that occurs in many groups. It is fundamentally caused by group cohesion,

but since there are many benefits to cohesion methods are sot to prevent GroupThink without

eliminating cohesion. There has been much research done on the subject and methods that prevent it.

Section 5 of this paper will address some of these methods.

3. Existing Literature on GroupThink in Software Engineering

A number of publications reference GroupThink when discussing cultural or group dynamics in

software engineering and information technology (Salinger, et al., 2008; Gallivan & Srite, 2005).

Since any group has the potential to exhibit GroupThink, it is easy to conclude that software

development group could fall victim to it. But these publications do not attempt to generalize the

typical software engineering group and conclude that GroupThink is exhibited in them.

An exception to this is an article published by Schiano and Weiss (Schiano & Weiss, 2006). Schiano

and Weiss assert that GroupThink was the cause of the Y2K crisis and is currently the reason that

many organizations have poor Information Technology security.

The Schiano and Weiss (Schiano & Weiss, 2006) research draws correlations between existing

research on the causes of the Y2K problem with the characteristics of GroupThink. It continues by

drawing similar correlations between attitudes toward security and GroupThink. Unlike previous

research in GroupThink Schiano and Weiss do not conclude that a specific group exhibited

GroupThink, rather they generalized groups working in these two areas.

International Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business Research
(IJCBR)(IJCBR)(IJCBR)(IJCBR)

ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229----6166616661666166
VOLUME 5 ISSUE 1 JANUARY 2014

4. Methodology

This research paper uses the meta-analysis research methodology. In meta-analysis research results

from different studies, normally on different topics, are combined. The combination of these studies

produces some new conclusion.

This paper identifies and examines research that relate to Janus’s characteristics of GroupThink.

Multiple studies exist relating to each characteristic. By combining these studies we can conclude

that GroupThink exists in typical software engineering teams.

5. GroupThink in Software Engineering

Before we can address methods to prevent GroupThink, we need to determine if GroupThink actually

occurs in many software engineering groups. This can be done through a survey of existing literature

in Peopleware.

A variety of researchers have studied the common characteristics of software development teams.

These characteristics can be used to demonstrate that Groupthink causes many of the decision flaws in

software development. The typical software development team is cohesive with respect to groups in

general.

5.1. Overestimation

The first characteristic of GroupThink is overestimation of the group. Overestimation of the group’s

ability can be seen in existing Peopleware literature.

A common overestimation that teams exhibit deals with predicting when software will be completed.

It is common knowledge that software engineers do a poor job of predicting completion dates

(Yourdon, 1997). There are two ways to describe a project taking longer than estimated: the

development team overestimated their ability or underestimated the complexity of the project. Both

explanations are equivalent. A study by Michiel van Genuchten (Van Genuchten, 1991) shows that

the two most common reasons that software projects overrun their schedule are that they spend more

time on other work like maintenance and that they underestimated the complexity of the project (Van

Genuchten, 1991). Overestimating their ability to do other work like maintenance caused 27% of the

International Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business Research
(IJCBR)(IJCBR)(IJCBR)(IJCBR)

ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229----6166616661666166
VOLUME 5 ISSUE 1 JANUARY 2014

projects to be late. Underestimating the complexity of the projects caused 20% of them to be late.

These findings show that software developers overestimate their ability to do maintenance and

develop software. Lederer (Lederer & Prasad, 1992) showed that 2/3 of all software projects overrun

their estimation.

Recently, research has given a clearer picture of this overestimation. Jorgensen and Grimstad

(Jorgensen & Grimstad, 2012) conducted research by contracting over 350 software developers

working in industry. Developers were asked to estimate a short software development task. They were

also given three questionnaires to measure different characteristics about the participants. The first

questionnaire measured self-construal, which is if they place importance on interdependence or

independence. The second questionnaire measured the subjects thinking style, holistic or analytic. The

final question measured their need-for-cognition, which is if they enjoy problem solving. These are

three common characteristics used in cultural studies.

Jorgensen and Grimstad (Jorgensen & Grimstad, 2012) found that individuals that score highly in

interdependence test were more likely to give lower estimation for software development tasks. These

results support previous research concluding that software developers do a poor job of estimation.

Other literature supports the correlation between the desire for group cohesion and interdependence

(Nisbett, 2003). Considering that developers that value interdependence also value group cohesion,

this research strongly supports the correlation between GroupThink and Software Engineering.

Another interesting result of Jorgensen and Grimstad (Jorgensen & Grimstad, 2012) was that

managers, developers with a lot of experience and developers with Master’s degrees also give lower

estimations. These individuals are considered leaders of the group. This finding is important because

one of the solutions to prevent GroupThink that will be described later in this paper is that leaders do

not give opinions.

Cerpa and Verner (Cerpa & Verner, 2009) conducted a study of failed software projects. Their survey

looked at factors of failed software projects. They found that in 81.4% of failed projects the

complexity of the project was under-estimated. This supports the assertion that many in software

engineering overestimate their abilities.

International Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business Research
(IJCBR)(IJCBR)(IJCBR)(IJCBR)

ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229----6166616661666166
VOLUME 5 ISSUE 1 JANUARY 2014

These studies show a consistent overestimation of ability and underestimation of software

development that span a number of decades. Even though it is commonly known that software

development estimations are often very low, software developers have been unable to compensate for

this.

5.2. Closed-mindedness

The second characteristic of GroupThink is closed-mindedness. In early stages of software

development the development team proposes how to implement the requested features within time

and budget. They develop a plan to do so. In many cases projects fail to fully implement requirements

within time and budget constraints. However, much research has indicated that members of the

software development team are some of the last to recognize this inevitable failure (Boehm &

DeMarco, 1997).

The Cerpa and Verner (Cerpa & Verner, 2009) study that was mentioned in the previous section also

found that in 75.7% of the projects risk management best practices were not followed. Risks were not

adequately identified, controlled and managed. One observation of their study is that even in cases

where project obviously failed team members would not admit that they failed (Cerpa & Verner,

2009). In the minds of the team members on these projects they were successful.

5.3. Pressure Toward Uniformity

There are a number of ways that software development groups exhibit internal pressure toward

uniformity. There are many ways to build software and ultimately the group must decide on one

method. Janus writes there are two ways that this pressure can be identified: self-censorship and

pressure of group members to agree.

Self-censorship is seen when software development efforts fall behind schedule. Often setbacks are

not reported to management when first realized (McConnel, 1996).

International Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business Research
(IJCBR)(IJCBR)(IJCBR)(IJCBR)

ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229----6166616661666166
VOLUME 5 ISSUE 1 JANUARY 2014

Pressure on group members, is seen in many phases of development. There is pressure on members of

a development team to not take on critical roles (Carr, 1997). Management rewards members that

agree with group ideas and punishes those who point out risks.

6. Methods to Address GroupThink

Research in GroupThink has developed a number of methods to prevent GroupThink without

eliminating group cohesion. The software engineering community has adopted some of these

methods. This also strengthens the argument that software engineering teams suffer from

GroupThink. Not only do the causes of GroupThink exist in software engineering, but also the

solutions to GroupThink increase quality of software.

6.1. Assign Role of Critic

One method to prevent GroupThink is to assign a role of critic. Many people have difficulties

bringing up issues with someone’s idea. This is viewed as too confrontational. Assigning a role of

critic reduces this stress. The critic must come up with potential issues with the idea. That is their role.

Most software development methods have included this solution in the form of design and code

reviews. Much research has indicated that reviews of this type are beneficial (Constantine, 1995;

Kemerer & Paulk, 2009).

6.2. Leaders Avoid Making Suggestions

Researchers that study GroupThink believe that groups may come to better decisions if leaders of the

group avoid making suggestions (Janus, 1972). When leaders put forth suggestions other group

members are too quick to agree with them. This prevents the group from fully considering all possible

approaches. Little if any research has been done on this in the software engineering field. This could

be a possible area of future research.

6.3. Independent Evaluation

A third method to prevent GroupThink is independent evaluation. This is also used in software

engineering. The field of Independent Verification and Validation (IV&V) is based upon this

International Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business Research
(IJCBR)(IJCBR)(IJCBR)(IJCBR)

ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229----6166616661666166
VOLUME 5 ISSUE 1 JANUARY 2014

philosophy. IV&V is used by many organizations including NASA. There is a variety of research

indicating that IV&V reduces costs and increases quality (Akella & Rao, 2011).

6.4. Make Suggestions Anonymous

There may be another way to prevent GroupThink without eliminating input from the group leaders.

If input from the group is anonymous group’s members do not automatically support the opinions of

their superiors. They do not know what input came from the group leaders. Research suggests that this

can improve group decision-making (Kontio, et al., 2004).

7. Conclusion

This research has multiple contributions. The obvious one is that it concludes that typical software

engineering groups exhibit GroupThink.

Understanding the correlations between software engineering and Groupthink provides a framework

for research. Research describing problems that occur in software engineering and best practices fit

nicely into the GroupThink framework. They are not disjoint research; rather there are relationships

between them. They all address issues with group cohesion.

There are some methods of addressing GroupThink that could be applied to software engineering.

One solution that Janus suggests is having a leader that does not give opinions. This removes the

desire of people to please their superiors by agreeing with them. Currently there has been no research

in software engineering on this approach. This could be future research.

Future research in GroupThink should be applied to software engineering. If evidence suggests that

GroupThink occurs in software engineering, then future research in GroupThink should be applied to

software engineering.

This paper outlines current research in Peopleware that support the notion that GroupThink occurs in

software engineering groups. It outlines many solutions to GroupThink. Some are part of current best

practices, while others could be future research. Preventing GroupThink while not eliminating group

cohesion is very important for software engineering.

International Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business Research
(IJCBR)(IJCBR)(IJCBR)(IJCBR)

ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229----6166616661666166
VOLUME 5 ISSUE 1 JANUARY 2014

References

[1] Janis, I (1982) Groupthink: Psychological Studies of Policy Decisions and Fiascoes,

Houghton Mifflin Co., Boston, Massachusetts.

[2] Janis, I (1972) Victims of Groupthink: A Psychological Study of Foreign-policy Decisions

and Fiascoes, Houghton Mifflin Co., Atlanta, Georgia.

[3] Kontio, J, et al. (2004) “Using Focus Group Method in Software Engineering: Obtaining

Practitioner and User Experience”, In Proceedings of the International Symposium on

Empirical Software Engineering, pages 271-280, Finland.

[4] Salinger, S, et al. (2008) “A Coding Scheme Development Methodology using Grounded

Theory for Qualitative Analysis of Pair Programming”, An Interdisciplinary Journal on

Humans in ICT Environments, Vol. 4, No. 1, pp. 9-25.

[5] Esser, J (1998) “Alive and Well after 25 Years: A Review of Groupthink Research”,

Organizational Behavior and Human Decision Processes, Vol. 73, No. 2/3, pp. 116-141.

[6] Cartwright, D, Zander, A. (1968) Group Dynamics: Research and Theory, Haprer and Row,

New York, New York.

[7] DeMarco, T & Lister, T (1987) Peopleware: Productive Projects and Teams, Dorest House

Publishing Co., New York, New York.

[8] Gallivan, M & Srite, M (2005) “Information Technology and Culture: Identifying

Fragmentary and Holistic Perspectives of Culture”, Information and Organization, Vol. 15,

pp. 295-338.

[9] Schiano, W & Weiss, J (2006) “Y2K all over again: How groupthink permeates IS and

compromises security”, Business Horizons, Vol. 49, pp. 115-125.

[10] Yourdon, E (1997) Death March: The Complete Software Developer's Guide to

Surviving "Mission Impossible" Projects, Prentice Hall, Upper Saddle River, New Jersey.

[11] Van Genuchten, M (1991) “Why is Software Late? An Empirical Study of Reasons

for Delay in Software Development”, IEEE Transactions on Software Engineering, Vol. 17,

No. 6, pp. 582-590.

[12] Lederer, A & Prasad, J (1992) “Nine Management Guidelines for Better Cost

Estimating”, Communications of the ACM, Vol. 35, No. 2, pp. 51-59.

International Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business ResearchInternational Journal of Computing and Business Research
(IJCBR)(IJCBR)(IJCBR)(IJCBR)

ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229ISSN (Online) : 2229----6166616661666166
VOLUME 5 ISSUE 1 JANUARY 2014

[13] Jorgensen, M & Grimstad, S. (2012) “Software Development Estimation Biases: The

Role of Interdependence”, IEEE Transactions On Software Engineering, Vol. 38, No. 3, pp.

677-693.

[14] Nisbett, R (2003) The Geography of Thought: How Asians and Westerners Think

Differently, Free Press, New York, New York.

[15] Cerpa, N & Verner, J (2009) “Why Did Your Project Fail?”, Communications of the

ACM, Vol. 52, No. 12, pp. 130-134.

[16] Boehm, B & DeMarco, T. Software Risk Management, IEEE Software, Vol. 17, No,

19, pp. 17-19.

[17] McConnel, S (1996) Rapid Development: Taming Wild Software Schedules,

Microsoft Press, Redmond, Washington.

[18] Carr M (1997) “Risk Management May Not Be for Everyone”, IEEE Software, Vol.

14, No. 3, pp. 21-24.

[19] Constantine, L (1995) Constantine on Peopleware, Yourdon Press, Englewood Cliffs,

New Jersey.

[20] Kemerer, C & Paulk, M (2009) “The Impact of Design and Code Reviews on

Software Quality: An Empirical Study Based on PSP Data”, IEEE Transactions on Software

Engineering, Vol. 25, No. 4, pp. 534-550.

[21] Akella, P & Rao, K (2011) “Effective Independent Quality Assessment using IV&V”,

International Journal of Computer Science & Information Technology, Vol. 3, No. 3, pp. 188-

198.

