
International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

Volume 6 Issue 1 January 2015

Registered URL with Govt. of India - http://www.researchmanuscripts.com

SELECTION OF DIRECT AND DERIVED FUNCTION POINT

ESTIMATION METHODS

Edna Tarverdian, Michael Scott Brown, Michael Pelosi

University of Maryland University College

etarverdian@student.umuc.edu

Michael.brown@umuc.edu

Michael.pelosi@faculty.umuc.edu

Abstract: In this paper we discuss software maintenance tools. Maintenance tools may include

everything from large-scale integrated CASE tools to simple one-function commands. The objective of

this paper is to learn more about software maintainers’ needs for software tools, and in particular

methods for estimating software size, so the maintainers may become more productive. This paper

discusses that the standard Function Point technique has allowed maintainers to increase significantly

in software maintenance practices. However, there are situations where estimation methods may be

more compatible to the standard rules of the Function Point (FP). First situation may be when

enhancement or development project is in early stages, which is not possible to perform FP count.

Another situation may be when the necessary documentation or the required time and resources are not

available to perform a standard FP count. Thus, the FP estimation methods may be very decisive for

these situations. In this paper, we present a review of several estimation methods with their

characteristics.

Keywords: Function Points, FP Estimation Methods, Software Size Estimation, Software

Measurement.

1. Introduction

Software maintenance tools are a significant help for software engineers and maintainers for

performing maintenance. Software maintenance tools may include anything functional that

help software maintainers solve maintenance problems. Generally, these tools are software

programs or parts of computer programs (Lethbridge, 1996). Lower-level CASE tools such as

Command Interpreter, Syntax Checker e.g. W3C CSS Validator, W3C HTML Validator are

examples of these tools.

Software size measures are one of the most significant measures among software

maintenance tools. These measures have direct relevance with maintenance planning,

tracking and estimating software projects. In addition, they are used to compute

productivities, to normalize quality indicators, and to derive measures for memory utilization

and test coverage (Park, 1992).

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

Volume 6 Issue 1 January 2015

Registered URL with Govt. of India - http://www.researchmanuscripts.com

In the effort to discuss the subject maintenance tools, the opportunity is presented in order

to distinguish effects of these tools on maintenance activities. Since software maintenance

activities take longer to perform than the development activities, measuring the size of the

software to be maintained has a significant effect on the overall maintenance process.

In this effort, a review of two widely used measures for software size will be presented

along with analysis on their strengths and weaknesses. Based on each measure’s advantages

and disadvantages, Function Points (FP) measurement will be explained as a more reliable

measurement. A description of different methods for estimating FPs will be discussed before

finally discussing the implications of the best estimation method and conclusion.

2. Software Size Measures

Essentially, there are two software size measures that are currently used widely in software

maintenance. First is the number of Source Line of Code (SLOC) and second is the number

of Function Points (FP). Research shows that in practice, it is difficult to estimate the number

of line of code accurately early in a project (Low, 1990). Particularly, when comparing

systems that are written in different languages, it has been proven that SLOC measures have

weaknesses to estimate productivity (Jones, 1986). Moreover, modern development

techniques, such as object-oriented programming, re-use of library components, and use of

open source components make the relationship of the SLOC and software attributes less

accurate (Fairley, 2009).

The other software size measure, FP, was developed by Allan Albrecht of IBM to

measure the external size of data processing applications, and is the most broadly popular

functional type metrics. It is suitable for evaluating a software application (Meli, 1998).

Research has proven that FPs were found to be the best productivity measure (Perry, 1986),

and have been widely used in cost estimations (Kemerer, 1987), software development

productivity evaluation (Behrens, 1983), software maintenance productivity evaluation

(Banker, 1991), software quality evaluation (Cooprider, 1989), and software project sizing

(Banker, 1989).

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

Volume 6 Issue 1 January 2015

Registered URL with Govt. of India - http://www.researchmanuscripts.com

3. Function Points Measurement

Function points (FPs) are calculated by counting the number of different kinds of inputs,

outputs, internal files, queries, and interfaces in software to be estimated (Fairley, 2009).

Each of the function point factors is then weighted as low, average or high. The weighted

values are summed in order to provide a total number of Unadjusted Function Points (UFPs).

The UPF is then combined with the Value Adjustment Factor (VAF) to attain the final

number of FP. The Value Adjustment Factor (VAF) may be computed by (Kemerer, 1993):

(1)

Where Ci is the value for general system characteristic i, for 0 <= Ci <= 5. These

characteristics are 1) data communications, 2) distributed functions, 3) performance, 4)

heavily used configuration, 5) transaction rate, 6) on-line data entry, 7) end user efficiency, 8)

on-line update, 9) complex processing, 10) reusability, 11) installation ease, 12) operational

ease, 13) multiple sites, and 14) facilitates change. Table 1 illustrates an example of function

point approach for measuring functional size of software (Fairley, 2009).

Table 1 A function point example

Complexity: Simple Average Complex Total

Inputs 17

Outputs 67

Files 55

Queries 73

Interfaces 30

 Total 242

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

Volume 6 Issue 1 January 2015

Registered URL with Govt. of India - http://www.researchmanuscripts.com

As it is shown in Table 1, the number of Unadjusted Function Points (UFP) in the above

example is 242. Assuming the composite adjustment factor (VAF) as 1.13, the number of

adjusted function points will be approximately 1.13 x 242 = 276. The adjusted function

points can be used to compare against other projects. This can be used to determine the

duration of the work.

4. Estimating Function Points

FP is considered the most efficient technique for estimating software size. However, in order

to follow the standard IFPUG Counting Practices, the complete and detailed set of user

functional requirements of the estimated software should be available (IFPUG, 1994). Thus, in

some situations, estimation methods shall be an alternative to the standards rules of FP. In

cases when the project is in early phases of software development or enhancement projects, it

is not possible to identify the elements of FP in order to perform a standard FP count. In

addition, there may be cases where the necessary documentation or the required time and

resources to perform FP count are not available.

In order to evaluate the software size soon and/or with the smallest need for resources,

several estimation methods have been proposed. Meli and Santillo (Meli, 1998) claim that

“Estimating means using less time and effort in obtaining an appropriate value of FP”. It

should be considered that the accuracy of estimation methods might be less than the standard

FP calculations.

Estimation models may be characterized as input-processing-output system. The input

variables are the information on the software that should be sized, and the output is the

functional size, which is the FP. The estimation methods are categorized as: 1) Direct

Estimation, and 2) Derived Estimation (Meli, 1998).

Direct Estimation methods are often involved with consultation of one or more experts.

These methods are also called Expert Opinion methods, in which the consulting experts

would guess the FP estimation based on their past experience. Direct estimations may

improve by use of Analogy or Delphi methods, which will be described in a future section of

this paper.

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

Volume 6 Issue 1 January 2015

Registered URL with Govt. of India - http://www.researchmanuscripts.com

Derived Estimation methods are often associated with decomposition of an application.

By decomposing an application to its major functions, estimation can be performed in a

stepwise fashion (Meli, 1998).

The main difference of direct estimation and derived estimation is that in direct

estimation the estimations are made directly on FP values, whereas in derived estimation they

are made on different software attributes that are associated with the FP values. Such

attributes could be adaptability, robustness, invariance and compatibility.

5. FP Estimation Methods

The VAF may be determined with few available details for a standard count. Therefore,

below we review most common methods for estimating the value of UFP.

5.1. Direct Estimation Methods

Direct Estimation methods are entirely influenced and dependent on expert(s)’s opinion(s). In

some cases where more than one expert is involved, then the estimates may be influenced by

personal relationships as well. Below are the most common direct FP estimation methods.

Delphi Techniques

In these techniques, each individual’s prediction is collected anonymously and is

combined together. The iteration cycle continues until the estimates meet an acceptable

range. Generally, the group estimate is a better estimate than an individual estimate (Meli,

1998).

Simple Analogy Method

In order to estimate software size, this method looks into the historical database for

systems that are similar to the estimated application. Using this data enables estimator to

provide a quick estimate of the product size.

Structured Analogy Method

In this method the estimator compares the estimated application with one or more existing

applications. The estimator first identifies the type of the application, makes an initial

estimation, and then improves the initial estimation within the original range.

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

Volume 6 Issue 1 January 2015

Registered URL with Govt. of India - http://www.researchmanuscripts.com

This method is basically the more formal approach of the Simple Analogy approach.

5.2. Derived Estimation Methods

Derived Estimation methods are mainly algorithmic models for estimating FP size. Below are

the most widely used algorithmic models.

Extrapolative Counts

The models for Extrapolative Counts assume that the estimator can only count one FP

component, which is usually the number of Internal Logical Files (ILF), and obtain the rest of

the counts on a statistical or theoretical basis. Following are some of these models.

Tichenor ILF Model is one model that uses Extrapolative counts technique, which

demonstrates a strong relation between the number of ILFs and UFP count as below (Meli,

1998):

 (If Batch System)

(If Transactional System, Create/Read/Update/Delete)

(2)

This model also provides the estimated Adjusted FP as follows (Meli, 1998):

 1.0024 (3)

 Tichenor IL model provides FP factors average ratios to ILF as below in Table 2 (Meli,

1998).

Table 2 Tichenor ILF Ratios

Application Characteristic ILF Ratio

External Inputs 0.33

External Outputs 0.39

External Inquiry 0.01

External Interface Files 0.097

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

Volume 6 Issue 1 January 2015

Registered URL with Govt. of India - http://www.researchmanuscripts.com

FP Prognosis by CNV AG is another approach that provides ratios for systems that are

outlined in Table 3 (Bundschuh, 1998).

Table 3 Tichenor ILF Ratios

Application Characteristic ILF Ratio

External Inputs 2.66

External Outputs 3.14

External Inquiry 1.20

External Interface Files 0.40

This model provides estimation for FP by summing the quantities of EI and EO (IO)

(Bundschuh, 1998):

 (4)

One advantage of FP Prognosis model is that it can be used in early stages without having

to investigate ILF and EIF. Meli and Santillo (Meli, 1998) claim that the error range for using

this model is 20%.

Indicative FP, also known as “the Dutch method”, was proposed by NESMA

(Netherlands Software Metrics Association), which calculates the UFP from the number of

data functions as follows (Tichenor, 1997):

(5)

The Indicative FP in Equation 6 is based on the assumption that “there will be about three

EI (to add, change, and delete information in the ILF), two EO, and one EQ on average for

every ILF, and about one EO and one EQ for every EIF” (Milne, 1998).

The release 5 of ISBSG has provided more generic set of ratios on average over 400 cases

as follows (Hill, 1999):

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

Volume 6 Issue 1 January 2015

Registered URL with Govt. of India - http://www.researchmanuscripts.com

(6)

The ISBSG Benchmark also states that most ILF are rated with low complexity (Hill, 1999);

therefore Meli and Santillo (Meli, 1998) stated that:

(7)

ISBSG states that because implicit functionalities aren’t visible in early stages but they are

included in standard FP counts, then a 20-30% possibility should be added to the above estimates

(Hill, 1999).

Sampled Counts

Using this method estimator may estimate the size of the product by counting a portion of the

system with respect to some FP components (EI, EO, EQ, ILF or EIF), while the IFPUG count

investigates the whole system (Meli, 1998).

Average Complexity Estimation

Table 4 illustrates the average function complexity for Development Projects by Release 5 of the

ISBSG Benchmark (Hill, 1999):

Table 4 Average Function Complexity

 Average UFP IFPUG

ILF 7.4 10

EIF 5.5 7

EI 4.3 4

EO 5.4 5

EQ 3.8 4

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

Volume 6 Issue 1 January 2015

Registered URL with Govt. of India - http://www.researchmanuscripts.com

Average complexity method estimates the product size by identifying all the components of the

IFPUG count (EI, EO, EQ, ILF, and EIF), and then assign a weighted average complexity rating to

them by using the following equation (Meli, 1998):

 (8)

Early Function Points

Early function points technique provides a better estimate for software size by using both

analogical and analytical classification of functionalities. In addition, this technique lets the

estimator use multilevel approach, which is to use different levels of details for different

branches of the system (Meli, 1997). One benefit of using multilevel approach is that it lets the

estimator to utilize his knowledge on one particular branch of the estimated system without

having to ask questions that are difficult to answer in early stages.

Early FP estimation key factors are Macrofunctions, Functions, Microfunctions,

Functional Primitives and Logical Data Groups (Meli, 1997). Functional Primitives are the

standard FP estimation factors, such as, EI, EO, and EQ. Macrofunctions, Functions, and

Microfunctions are different combination of more than one Functional Primitive at different

detail level. Logical Data Groups are the standard Logical Files without the differentiation of

external and internal.

Early FP estimation assigns each object a set of minimum, average, and maximum FP

values based on analytical tables. Then the values are summed up, which provides the UFP

(unadjusted FP) estimate (Milne, 1998). Based on the chosen detail level, the estimates that are

provided by this estimation technique may be indicated as detailed, intermediate or summary

(Meli, 1997).

The reliability of EFP depends on the estimator’s ability to identify the system’s

components as part of one of the proposed classes. This ability may be improved through

practice. Besides the estimator’s ability, research has proven that EFP technique is quite

effective and it provides a response within 10% of the real FP value in most cases.

Moreover, it provides a time and cost savings between 50% and 90% with respect to

equivalent standard counts (Meli, 1997).

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

Volume 6 Issue 1 January 2015

Registered URL with Govt. of India - http://www.researchmanuscripts.com

6. Conclusion

In this work, several software size estimation methods were discussed, and functional

software metrics Function Point IFPUG 4.0 was assumed as a standard. Table 5 illustrates a

summary of the presented estimation methods.

Table 5 Software Size Estimation Methods

 Advantages Disadvantages

Direct Estimation Methods

Delphi Techniques May result in accurate estimates Difficult to justify the results

Simple Analogy

Method
Based on estimator’s experience

Highly depends on the

availability of the historical

data and expertise of the

estimator

Structured Analogy

Method
Based on estimators’ experience

Highly depends on the

availability of the historical

data and expertise of the

estimator

Derived Estimation Methods

Extrapolative Counts

Counts only one FP component,

which is mostly Internal Logical

Files (ILF)

Derives the rest of the count

on a theoretical basis

Sampled Counts

Counts a portion of the system with

respect to some FP components (EI,

EO, EQ, ILF or EIF)

Estimates the count of the rest

of the system

Average Complexity

Estimation

Generally results in more accurate

estimates

Identifies all the components

of the IFPUG count

Early Function Points

Provides a better estimate by using

both analogical and analytical

functionalities

Highly depends on the ability

of the estimator to recognize

the components of the system

None of the presented alternatives are better than the other as each method has their own

strengths and weaknesses. We must note that the level of detail of information that is needed

to estimate Function Points by most of the Derived Estimation Methods are very similar to

the ones that is needed by a standard count, and therefore these estimation methods are not

mostly dominant. However, the Early Function Point method is an exclusion from this.

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

Volume 6 Issue 1 January 2015

Registered URL with Govt. of India - http://www.researchmanuscripts.com

As a conclusion, based on the strengths and weaknesses of different presented methods,

the best estimation should be the one that uses a combination of techniques, and the

comparison and iteration of the estimates that is obtained from each one.

References

Lethbridge, T. C., & Singer, J. (1996) “Understanding Software Maintenance Tools: Some Empirical

Research”, 1st
Workshop on Empirical Studies of Software Maintenance.

Park, E. R. (1992) “Software Size Measurement: A Framework for Counting Source Statements”,

Retrieved from http://www.sei.cmu.edu/reports/92tr020.pdf

Low, C. G., & Jeffery, D. R. (1990) “Function Points in the estimation and evaluation of the software

process”, IEEE Trans. Softw. Eng., 16(1), 64-71.

Jones, C. (1986) Programming Productivity. New York: McGraw-Hill.

Fairley, R. E. (2009) Managing AND Leading Software Projects.Hoboken, NJ: A John Wiley & Sons,

Inc., Publication.

Meli, R., & Santillo, L. (1998) “Function Point Estimation Methods: A Comparative Overview”.

Perry, W. E. (1986) “The best measures for measuring data processing quality and productivity”,

Tech. Rep. Quality Assurance Institute.

Kemerer, C. F. (1987) “An empirical validation of software cost estimation models”, Commun.ACM,

30(5).

Behrens, C. A. (1983) “Measuring the productivity of computer systems development activities with

Function Points”, IEEE Trans. Softw. Eng. SE-9(6), 648-652.

Banker, R. D., Datar, S. M. & Kemerer, C. F. (1991) “A model to evaluate variables impacting

productivity on software maintenance projects”, Manage. Sci, 37(1), 1-18.

Cooprider, J., & Henderson, J. (1989) “A multi-dimensional approach to performance evaluation for

I/S development”, Working Paper 197, MIT Center for Information Systems Research. Cambridge,

Mass.

Banker, R. D., & Kemerer, C. F. (1989) “Scale economies in new software development”, IEEE

Trans. Softw. Eng., SE-15(10), 416-429.

Kemerer, C. F. (1993) “Reliability of Function Points Measurement”, Communication Of The ACM,

36(2).

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

Volume 6 Issue 1 January 2015

Registered URL with Govt. of India - http://www.researchmanuscripts.com

IFPUG – Function Point Counting Practices Manual, Rel. 4.0. (1994)

Bundschuh, M. (1998). “Function Point Prognosis”, FESMA 98 Procs.

Tichenor, C. (1997). “The IRS Development and Application of the Internal Logical File Model to

Estimate Function Point Counts”, IFPUG Fall Conference.

Milne, B. J., & Luxford, K. B. G. (1998). “ISBSG – Worldwide Software Development”, The

Benchmack, Release 5. 23-36.

Hill, P. R. (1999). ISBSG – Software Project Estimation, A Workbook for Macro-Estimation of

Software Development Effort and Duration.

Meli, R. (1997). “Early and Extended FP: a New Estimation Method for Software Projects”, IFPUG

Fall Conference.

