
International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

 International Manuscript ID : 22296166V8I1201803

Volume 8 Issue 1 January - February 2018

Registered with Council of Scientific and Industrial Research, Govt. of India

Registered in UGC Approved Listed of International Journals

Deep Appraisal of Understandability and Reusability

using Comments Analysis in Source Code

Jitender Singh Brar
1
, Prof. S. S. Sarangdevot

2
, Dr. Vishal Goar

3

1
 Research Scholar

Janardan Rai Nagar Rajasthan Vidyapeeth University

Udaipur, Rajasthan, India

2
 Professor

Janardan Rai Nagar Rajasthan Vidyapeeth University

Udaipur, Rajasthan, India

3
Assistant Professor

Department of Computer Applications

Government Engineering College, Bikaner, Rajasthan, India

Abstract

The deep assessment and multidimensional

evaluation of software quality is one of the key

domains of research in software engineering

and project management to achieve the higher

degree of performance and overall integrity of

the software project. The software modules are

overall projects are developed to achieve the

higher optimization of cohesion and coupling

which makes the reusability of the software to

higher extent. In this research work, the soft

computing based approaches are making the

overall scenario of reusability quite effectual

with the greater accuracy. The projected

approach is making use of fuzzy as well as

nature inspired approach to maintain the

reusability. The software quality of the project

is highly dependent on the source code which

is written by the developers with assorted

testing approaches. This work is having

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

 International Manuscript ID : 22296166V8I1201803

Volume 8 Issue 1 January - February 2018

Registered with Council of Scientific and Industrial Research, Govt. of India

Registered in UGC Approved Listed of International Journals

multiple scenarios to evaluate the accuracy and

quality of source code with the software

metrics and integration of cohesion and

coupling based reusability factors in the source

code. The multiple scenarios and cases of

source codes in Java, C, C++ and PHP are

taken to analyze the performance of software

source code for multiple dimensional based

effectiveness and reusability factors.

Keywords: Source Code Quality, Software

Quality, Software Project Management

Introduction

Software functional quality reflects how well

it complies with or conforms to a given design,

based on functional requirements or

specifications. That attribute can also be

described as the fitness for purpose of a piece

of software or how it compares to competitors

in the marketplace as a worthwhile product. It

is the degree to which the correct software was

produced. Software structural quality refers to

how it meets non-functional requirements that

support the delivery of the functional

requirements, such as robustness or

maintainability. It has a lot more to do with the

degree to which the software works as needed.

Some structural qualities, such as usability,

can be assessed only dynamically (users or

others acting in their behalf interact with the

software or, at least, some prototype or partial

implementation; even the interaction with a

mock version made in cardboard represents a

dynamic test because such version can be

considered a prototype). Other aspects, such as

reliability, might involve not only the software

but also the underlying hardware, therefore, it

can be assessed both statically and

dynamically (stress test).

Functional quality is typically assessed

dynamically but it is also possible to use static

tests (such as software reviews). Historically,

the structure, classification and terminology of

attributes and metrics applicable to software

quality management have been derived or

extracted from the ISO 9126-3 and the

subsequent ISO 25000:2005 quality model,

also known as SQuaRE. Based on these

models, the Consortium for IT Software

Quality (CISQ) has defined five major

desirable structural characteristics needed for a

piece of software to provide business value:

Reliability, Efficiency, Security,

Maintainability and (adequate) Size.

Software quality measurement quantifies to

what extent a software program or system

rates along each of these five dimensions. An

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

 International Manuscript ID : 22296166V8I1201803

Volume 8 Issue 1 January - February 2018

Registered with Council of Scientific and Industrial Research, Govt. of India

Registered in UGC Approved Listed of International Journals

aggregated measure of software quality can be

computed through a qualitative or a

quantitative scoring scheme or a mix of both

and then a weighting system reflecting the

priorities. This view of software quality being

positioned on a linear continuum is

supplemented by the analysis of critical

programming errors that under specific

circumstances can lead to catastrophic outages

or performance degradations that make a given

system unsuitable for use regardless of rating

based on aggregated measurements. Such

programming errors found at the system level

represent up to 90% of production issues,

whilst at the unit-level, even if far more

numerous, programming errors account for

less than 10% of production issues. As a

consequence, code quality without the context

of the whole system, as W. Edwards Deming

described it, has limited value. To view,

explore, analyze, and communicate software

quality measurements, concepts and

techniques of information visualization

provide visual, interactive means useful, in

particular, if several software quality measures

have to be related to each other or to

components of a software or system. For

example, software maps represent a

specialized approach that can express and

combine information about software

development, software quality, and system

dynamics.

Halstead Complexity Measures

Such measures are software metrics introduced

by Maurice Howard Halstead in 1977 as part

of the treatise on establishing an empirical

science of software development. Halstead

makes the observation that metrics of the

software should reflect the implementation or

expression of algorithms in different

languages, but be independent of their

execution on a specific platform. These

metrics are therefore computed statically from

the code. Halsteads goal was to identify

measurable properties of software, and the

relations between them. This is similar to the

identification of measurable properties of

matter (like the volume, mass, and pressure of

a gas) and the relationships between them

(analogous to the gas equation). Thus his

metrics are actually not just complexity

metrics.

Halstead complexity metrics were developed

by the late Maurice Halstead as a means of

determining a quantitative measure of

complexity directly from the operators and

operands in the module to measure a program

modules complexity directly from source

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

 International Manuscript ID : 22296166V8I1201803

Volume 8 Issue 1 January - February 2018

Registered with Council of Scientific and Industrial Research, Govt. of India

Registered in UGC Approved Listed of International Journals

code. Among the earliest software metrics,

they are strong indicators of code complexity.

Because they are applied to code, they are

most often used as maintenance metric. There

is evidence that Halstead measures are also

useful during development, to assess code

quality in computationally-dense applications.

Because maintainability should be a concern

during development, the Halstead measures

should be considered for use during code

development to follow complexity trends.

Halstead measures were introduced in 1977

and have been used and experimented with

extensively since that time. They are one of

the oldest measures of program complexity.

Halsteads metrics is based on interpreting the

source code as a sequence of tokens and

classifying each token to be an operator or an

operand.

Then is counted

• number of unique (distinct) operators

(n1)

• number of unique (distinct) operands

(n2)

• total number of operators (N1)

• total number of operands (N2).

The number of unique operators and operands

(n1 and n2) as well as the total number of

operators and operands (N1 and N2) are

calculated by collecting the frequencies of

each operator and operand token of the source

program.” Other Halstead measures are

derived from these four quantities with certain

fixed formulas as described later. The

classification rules of CMT++ are determined

so that frequent language constructs give

intuitively sensible operator and operand

counts. All other Halsteads measures are

derived from these four quantities using the

following set of formulas.

Program length (N): The program length (N) is

the sum of the total number of operators and

operands in the program:

 N = N1 + N2

Vocabulary size (n): The vocabulary size (n) is

the sum of the number of unique operators and

operands:

 n = n1 + n2

Program volume (V): The program volume

(V) is the information contents of the program,

measured in mathematical bits. It is calculated

as the program length times the 2-base

logarithm of the vocabulary size (n) :

 V = N * log2(n)

Halsteads volume (V) describes the size of the

implementation of an algorithm. The

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

 International Manuscript ID : 22296166V8I1201803

Volume 8 Issue 1 January - February 2018

Registered with Council of Scientific and Industrial Research, Govt. of India

Registered in UGC Approved Listed of International Journals

computation of V is based on the number of

operations performed and operands handled in

the algorithm. Therefore V is less sensitive to

code layout than the lines-of-code measures.

The volume of a function should be at least 20

and at most 1000. The volume of a

parameterless one-line function that is not

empty; is about 20. A volume greater than

1000 tells that the function probably does too

many things.

The volume of a file should be at least 100 and

at most 8000. These limits are based on

volumes measured for files whose LOCpro

and v(G) are near their recommended limits.

The limits of volume can be used for double-

checking.

Difficulty level (D): The difficulty level or

error proneness (D) of the program is

proportional to the number of unique operators

in the program.

D is also proportional to the ration between the

total number of operands and the number of

unique operands (i.e. if the same operands are

used many times in the program, it is more

prone to errors).

 D = (n1 / 2) * (N2 / n2)

Program level (L): The program level (L) is

the inverse of the error proneness of the

program i.e. a low level program is more

prone to errors than a high level program.

 L = 1 / D

Effort to implement (E): The effort to

implement (E) or understand a program is

proportional to the volume and to the difficulty

level of the program.

 E = V * D

Time to implement (T): The time to implement

or understand a program (T) is proportional to

the effort. Empirical experiments can be used

for calibrating this quantity. Halstead has

found that dividing the effort by 18 give an

approximation for the time in seconds.

 T = E / 18

Number of delivered bugs (B): The number of

delivered bugs (B) correlates with the overall

complexity of the software.

Halstead gives the following formula for B:

 B = (E ** (2/3)) / 3000 ** stands

for to the exponent

Halsteads delivered bugs (B) is an estimate for

the number of errors in the implementation.

Delivered bugs in a file should be less than 2.

Experiences have shown that, when

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

 International Manuscript ID : 22296166V8I1201803

Volume 8 Issue 1 January - February 2018

Registered with Council of Scientific and Industrial Research, Govt. of India

Registered in UGC Approved Listed of International Journals

programming with C or C++, a source file

almost always contains more errors than B

suggests. The number of defects tends to grow

more rapidly than B. When dynamic testing is

concerned, the most important Halstead metric

is the number of delivered bugs. The number

of delivered bugs approximates the number of

errors in a module. As a goal at least that many

errors should be found from the module in its

testing.

Existing Theories for Software Defects

Analysis and Predictions for Multiple

Instances integrates the following

• The base work associated with

software defect predictions is done

• The classical research is based on the

analysis and evaluation of parameters

based on the real time live projects

and a dataset is prepared

• The classical fuzzy approach is used

for software defects predictions on the

perspective of multiple dimensions.

Analysis of Threshold and Acceptability

Score

• The base algorithmic approach of

fuzzy mathematical modelling is

relying on the decision factor of a

software defect

• The fuzzy logic is deciding the

parameters which determining the

threshold and limits of software

defects using multiple parameters

including MMRE and BMMRE

• Using acceptability score or threshold,

the perspectives are under

investigation for final predictive

measures

Selection of the Simulation Tool / TestBed

for Simulation and Testing of the Results

• To perform or implement any research

work, the identification of suitable tool

is important task

• The deep analysis and learning of the

existing work determines that the

MATLAB should be used. The key

reason behind this decision is that

MATLAB is having full compatibility

and support for fuzzy logic as well as

artificial neural network using its

inherent toolboxes.

Generation of Dataset and Implementation

of Data Cleaning

• The same dataset is used which is

integrated in the classical approach

and finally cleaned.

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

 International Manuscript ID : 22296166V8I1201803

Volume 8 Issue 1 January - February 2018

Registered with Council of Scientific and Industrial Research, Govt. of India

Registered in UGC Approved Listed of International Journals

• Data cleaning means to find out and

extract the meaningful attributes from

the dataset so that effective and

optimal results can be obtained.

Activation of Fuzzy and ANN Based

Approach

• Using fuzzy logic toolbox (fuzzy) and

artificial neural network toolbox

(nntool), the dataset is initialized and

activated. These toolboxes are used to

train the model and finally devise the

predictive reports.

Analysis of the Threshold and Current

Acceptance of the Solutions

• Once the dataset is trained and the

model obtained appropriate epochs for

learning, the acceptability of the

output is done.

• The acceptability of the output is

checked with the parameters of

gradient and regression analysis

• Minimum value towards zero is

effective and giving minimum number

of error rate

Research Methodology

• Data Set Formation from Assorted

Sources

• Implementation of dataset using fuzzy

logic in classical approach

• Features Extraction

• Identification of Key Aspects

• Development of a unique network for

training

• Training of ANN Model

• Defects Analysis with the inherent

parameters

• Deep Investigation and Predictive

Analysis

The software defect prediction is one of the

prominent domains in software engineering

which is required to be processed using new

and effective algorithms. The classical

approaches related to fuzzy modelling can be

improved using proposed artificial neural

networks.

Research Goals

1. To perform the detailed comparative

analysis of software defect prediction

approaches and algorithms

2. To evaluate the performance factors of

assorted techniques

3. Development of a real and dynamic

code for the software defect prediction

so that the real implemented results

and output can be obtained

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

 International Manuscript ID : 22296166V8I1201803

Volume 8 Issue 1 January - February 2018

Registered with Council of Scientific and Industrial Research, Govt. of India

Registered in UGC Approved Listed of International Journals

4. Evaluation of Real Time Datasets for

software defect prediction with related

parameters

5. Implementation of dynamic code with

the integration of neural network and

fuzzy approach on assorted scenarios

Simulation Scenario

LOC

Classical

Approach

Proposed

Approach

50 1.234235 0.892324

Figure 1: Average Execution Time Analysis of

50 LOC from the Classical and Proposed

Approach

In the above drawn representation of the

figure, it is very clear from the bar chart that

the proposed approach is taking very less time

as compared to the corresponding classical

approach in every query execution attempt or

implementation scenario or execution

iteration. In this scenario, we have taken the

average of 50 LOC executed on the live server

fetching results.

Conclusion

Source Code Quality, Software defect

prediction and related testing approaches are

not new but in use from a long time since the

inception of software development. The

software applications are classically vulnerable

to different types of bugs and defects because

of programming, execution and logic based

tasks. There is need to develop the effective

mechanisms to evaluate the existing

limitations and drawbacks in the current

technologies so that further defects cannot

happen. The work is having focus on multiple

perspectives including source code quality and

overall quality check of the software with the

defects prediction. In this research work, a

novel, effective and performance aware

algorithmic implementation is done with the

integration of artificial neural networks and

found that the ANN based approach is giving

better results than fuzzy logic based approach.

The fuzzy logic based implementation is done

in the existing work in which a set of rules are

mentioned and based on these rules, the

software defect prediction metrics can be

evaluated. The proposed ANN based approach

is effective than the classical fuzzy based

approach and giving more accurate and

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

 International Manuscript ID : 22296166V8I1201803

Volume 8 Issue 1 January - February 2018

Registered with Council of Scientific and Industrial Research, Govt. of India

Registered in UGC Approved Listed of International Journals

precision based values which are more

effective and performance aware.

References

[1] D. Spinellis, “Code Quality: The Open

Source Perspective”, Addison-Wesley, Boston

- MA,2003.

[2] B. N. Corwin, R. L. Braddock,

"Operational performance metrics in a

distributed system", Symposium on Applied

Computing, Missouri - USA, 1992, pp. 867-

872.

[3] R.Numbers, "Building Productivity

Through Measurement", Software Testing and

Quality Engineering Magazine, vol 1, 1999,

pp. 42-47

[4] IFPUG - International Function Point

Users Group, online, last update: 03/2008,

available: http://www.ifpug.org/

[5] B. Boehm, “Cost Models for Future

Software Life Cycle Processes: COCOMO

2.0”, U.S.Center for Software Engineering,

Amsterdam, 1995, pp. 57-94.

[6] N. E. Fenton, M. Neil, “Software Metrics:

Roadmap”, International Conference on

Software Engineering, Limerick - Ireland,

2000, pp. 357–370.

[7] M. K. Daskalantonakis, “A Pratical View

of Software Measurement and Implementation

Experiences Within Motorola”, IEEE

Transactions on Software Engineering, vol 18,

1992, pp. 998–1010.

[8] R. S. Pressman, "Software engineering a

practitioner's approach", 4th.ed, McGraw-Hill,

New York - USA, 1997, pp. 852.

[9] I. Sommerville, “Engenharia de Software”,

Addison-Wesley, 6º Edição, São Paulo – SP,

2004.

[10] D. C. Ince, M. J. Sheppard, "System

design metrics: a review and perspective",

Second IEE/BCS Conference, Liverpool - UK,

1988, pp. 23-27.

[11] L. C. Briand, S. Morasca, V. R. Basili,

“An Operational Process for Goal-Driven

Definition of Measures”, Software

Engineering - IEEE Transactions, vol 28,

2002, pp. 1106-1125.

[12] Refactorit tool, online, last update:

01/2008, available:

http://www.aqris.com/display/ap/RefactorIt

[13] O. Burn, CheckStyle, online, last update:

12/2007, available: http://eclipse-

cs.sourceforge.net/index.shtml

[14] M. G. Bocco, M. Piattini, C. Calero, "A

Survey of Metrics for UML Class Diagrams",

Journal of Object Technology 4, 2005,pp. 59-

92.

[15] JDepend tool, online, last update: 03/2006

[16] Metrics Eclipse Plugin, online, last

update: 07/2005

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

 International Manuscript ID : 22296166V8I1201803

Volume 8 Issue 1 January - February 2018

Registered with Council of Scientific and Industrial Research, Govt. of India

Registered in UGC Approved Listed of International Journals

[17] Coverlipse tool, online, last update:

07/2006

[18] JHawk Eclipse Plugin, online, last update:

03/2007

[19] S. Morasca, L. C. Briand, V. R. Basili, E.

J. Weyuker, M. V. Zelkowitz, B. Kitchenham,

S. Lawrence Pfleeger, N. Fenton, "Towards a

framework for software

measurementvalidation", Software

Engineering, IEEE Transactions, vol 23, 1995,

pp. 187-189.

[20] H. F. Li, W. K. Cheung, “An Empirical

Study of Software Metrics”, IEEE

Transactions on Software Engineering, vol 13,

1987, pp. 697-708.

[21] H. Zuse, “History of Software

Measurement”, online, last update: 09/1995,

[22] N. E. Fenton, M. Neil, “Software Metrics:

Roadmap”, International Conference on

Software Engineering, Limerick - Ireland,

2005, pp. 357–370.

[23] T. J. McCabe, “A Complexity Measure”.

IEEE Transactions of Software Engineering,

vol SE-2, 1976, pp. 308-320.

[24] D. Kafura, G. Reddy, “The Use of

Software Complexity Metrics in Software

Maintenance”, IEEE Transactions on Software

Engineering archive, vol 13 , New Jersey -

USA, 1987, pp. 335-343.

[25] B. Ramamurty, A. Melton, “A Syntheses

of Software Science Measure and The

Cyclomatic Number”, IEEE Transactions on

Software Engineering, vol 14, New Jersey -

USA, 1988, pp. 1116-1121.

[26] J. K. Navlakha, “A Survey of System

Complexity Metrics”, The Computer Journal,

vol 30, Oxford - UK, 1987, pp. 233-238.

[27] E. VanDoren, K. Sciences, C. Springs,

“Cyclomatic Complexity”, online, last update:

01/2007

[28] R. K. Lind, K. Vairavan, “An

Experimental Investigation of Software

Metrics and Their Relationship to Software

Development Effort”, IEEE Transactions on

Software Engineering, New Jersey - USA,

1989, pp. 649-653.

[29] G. K. Gill, C. F. Kemerer, “Cyclomatic

Complexity Density and Software

Maintenance Productivity”, IEEE Transactions

on Software Engineering, 1981, pp. 1284-

1288.

[30] M. H. Halstead, Elements of Software

Science, Operating, and Programming

Systems, vol 7, New York - USA, 1977,

page(s): 128.

[31] B. H. Yin, J. W. Winchester, "The

establishment and use of measures to evaluate

the quality of software designs", Software

quality assurance workshop on Functional and

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

 International Manuscript ID : 22296166V8I1201803

Volume 8 Issue 1 January - February 2018

Registered with Council of Scientific and Industrial Research, Govt. of India

Registered in UGC Approved Listed of International Journals

performance, New York - USA, 1978, pp. 45-

52.

[32] R. R. Willis, "DAS - an automated system

to support design analysis", 3rd international

conference on Software engineering, Georgia -

USA, 1978, pp. 109-115.

[33] C. L. McClure, “A Model for Program

Complexity Analysis”, 3rd International

Conference on Software Engineering, New

Jersey - USA, 1978, pp. 149-157.

[34] N. Woodfield, "Enhanced effort

estimation by extending basic programming

models to include modularity factors", West-

Lafayette, USA, 1980.

[35] S. Henry, D. Kafura, "Software Structure

Metrics Based on Information Flow", Software

Engineering, IEEE Transactions, 1981, pp.

510-518.

[36] S. R. Chidamber, C. F. Kemerer, “A

Metrics Suite for Object Oriented Design”,

IEEE Transactions on Software Engineering,

vol 20, Piscataway - USA, 1994, pp. 476-493.

[37] M. Alshayeb, M. Li, "An Empirical

Validation of Object-Oriented Metrics in Two

Different Iterative Software Processes", IEEE

Transactions on Software Engineering archive,

vol 29, 2003, pp. 1043–1049.

[38] R. Subramanya, M. S. Krishnan,

“Empirical Analysis of CK Metrics for Object-

Oriented Design Complexity: Implication for

Software Defects”, IEEE Transactions on

Software Engineering, vol 29, 2003, pp. 297-

310.

[39] L. C. Briand, S. Morasca, V. R. Basili,

"Property-based software engineering

measurement", Software Engineering, IEEE

Transactions, vol 22, 1996, pp. 68 - 86.

[40] S. R. Chidamber, D. P. Darcy, C. F.

Kemerer, "Managerial use of metrics for

object-oriented software: anexploratory

analysis", Software Engineering, IEEE

Transactions, vol 24, 1998, pp. :629–639.

[41] Mei-Huei Tang, Ming-Hung Kao, Mei-

Hwa Chen, "An empirical study on object-

oriented metrics", Software Metrics

Symposium, 1999, pp. 242-249.

[42] M. Lorenz, J. Kidd, “Object-Oriented

Software Metrics: A Practical Guide”,

Englewood Cliffs, New Jersey - USA, 1994.

[43] A. F. Brito, R. Carapuça, "Object-

Oriented Software Engineering: Measuring

and controlling the development process", 4th

Interntional Conference on Software Quality,

USA, 1994.

[44] L. Briand, W. Devanbu, W. Melo, "An

investigation into coupling measures for C++",

19th International Conference on Software

Engineering, Boston - USA, 1997, pp. 412-

421.

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

 International Manuscript ID : 22296166V8I1201803

Volume 8 Issue 1 January - February 2018

Registered with Council of Scientific and Industrial Research, Govt. of India

Registered in UGC Approved Listed of International Journals

[45] R. Harrison, S Counsell, R. Nithi,

"Coupling Metrics for Object-Oriented

Design", 5th International Software Metrics

Symposium Metrics, 1998, pp. 150-156.

[46] M. Marchesi, "OOA metrics for the

Unified Modeling Language", Second

Euromicro Conference, 1998, pp. 67-73.

[47] T. Mayer, T. Hall, “A Critical Analysis of

Current OO Design Metrics”, Software

Quality Journal, vol 8, 1999, pp. 97-110.

[48] N. F. Schneidewind, "Measuring and

evaluating maintenance process using

reliability, risk, and test metrics", Software

Engineering, IEEE Transactions, vol 25, 1999,

pp. 769-781.

[49] V. R. Basili, L. C. Briand, W. L. Melo,

"A Validation of Object-Oriented Design

Metrics as Quality Indicators", IEEE

Transactions on Software Engineering, vol 22,

New Jersey - USA, 1996, pp. 51-761.

[50] L. C. Briand, S. Morasca, V. R. Basili,

"Defining and validating measures for object-

based high-level design", Software

Engineering, IEEE Transactions, vol 25, 1999,

pp. 722-743.

[51] K. E. Emam, S. Benlarbi, N. Goel, S. N.

Rai, "The Confounding Effect of Class Size on

the Validity of Object-Oriented Metrics",

IEEE Transaction on Software Engineering,

vol 27, 2001, pp. 630-650.

[52] A. Chatzigeorgiou, “Mathematical

Assessment of Object-Oriented Design

Quality”, IEEE Transactions on Software

Engineering, vol 29, 2003, pp. 1050-1053.

