
International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

International Manuscript ID : 22296166V7I3201705

Volume 8 Issue 1 January 2018

Evaluation of Software Design Complexity using Halstead

Metrics

Ashwani Sethi1, Surinder Kumar Sharma2,

 Professor, Guru Kashi Unversity
1

 Research Scholar, Guru Kashi University
2

Abstract

The evaluation of software quality and

audit from multiple perspectives is an

important task before actual deployment so

that the bugs, complexity and overheads

can be evaluated in prior. The successful

running of source code is always not

sufficient because the code complexity and

related performance issues are also

required to be integrated for cumulative

results. In this research manuscript, the

complexity measures associated with the

software are analyzed with the empirical

results using Halstead's metrics used for

complexity. In traditional Halstead

metrics, the use of program vocabulary,

length and difficulty levels are processed

which are not sufficient as per the current

paradigms of the programming using

advance tools. Now days, most of the work

is done using object oriented programming

languages and therefore the improvements

are proposed in the traditional Halstead

metrics with object oriented paradigms.

The projected results are found effectual as

compared to the classical approach on

multiple parameters.

Keywords: Code Coverage, Code Evaluation,

Halstead Metrics, Object Oriented Enabled

Halstead Metrics, Software Complexity

Introduction

Software Design and Code Metrics is one

of the prominent areas of research in the

segment of software engineering [1]. In

this domain, the deep perspectives of the

source code written for a specific software

tool are analyzed so that the resource

consumption and finally optimization can

be done [2]. The execution of source code

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

International Manuscript ID : 22296166V7I3201705

Volume 8 Issue 1 January 2018

consumes enormous system resources

including memory, processor and time

which degrade the overall performance if

not taken care [3].

Following are the key measurements and

indexes used while analyzing the quality of

code and overall software design

Figure 1: Key Measurement Factors for

Evaluation of Software Code and Design

Maintainability Index

It ensures the understandability and

reusability of the source code. This value

ranges from 0 to 100 in terms of the index

value. Higher value signifies the higher

degree of maintainability [4].

Cyclomatic Complexity

It evaluates the structural complexity of

the source code so that the different

constituents of source code can be

measured with the flow of code [5].

Inheritance Depth

This aspect evaluates the depth of the

inheritance in the functions and classes of

the source code so that overall dependency

of modules can be evaluated [6].

Lines of Code

It signifies the lines of code which are

executed by the compiler or interpreter. It

is always desired to write the optimized

code with less number of lines so that

overall overhead can be reduced [7].

Halstead Metricsfor Evaluation of

Complexity

The original performance of a software

design is associated with the assessment of

complexity measures and metrics. Simply

development of code and testing using

automation tools are not sufficient because

only these perspectives can increase the

overall overhead on different resource of

the system. The system resources which

are directly affected by the software design

and code are Memory, Processor,

Execution Time, Dependent Libraries and

many others.

In year 1977, M. H. Halstead devised the

metrics for the measurement and

evaluation of software complexity using

Key
Measurement

Factors

Inheritanc
e Depth

Lines of
Code

Cyclomatic
Complexity

Maintaina
bility
Index

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

International Manuscript ID : 22296166V7I3201705

Volume 8 Issue 1 January 2018

different code components and categories

[8]. This metrics is more focused towards

the implementation of program code based

on the classical components including

Operators, Operands and their relative

occurrences. That was the time when the

Object Oriented Programming (OOP) was

not prominent.

Key elements and constituents of the

Halstead metrics include the following

Table 1. Indicators and Elements of Halstead

Metrics

Element or

Indicator

Description

n1 Number of unique operators

n2 Number of unique operands

N1 Number of total occurrence

of operators

N2 Number of total occurrence

of operands

Table 2. Metrics Report from the Viewer of

Source Code

Parameter Metric

Element

Notation

Vocabulary n n1 + n2

Size N N1 + N2

Volume V Length * Log2

Vocabulary

Difficulty D (n1/2) * (N1/n2)

Efforts E Difficulty *

Volume

Errors B Volume / 3000

Testing

time

T Time = Efforts /

S, where S=18

seconds.

Simula is considered as the first

programming language that was object

oriented programming language but its

popularity escalated in far ahead decades.

The Halstead Metrics was lacking on the

perspectives of including the OOP based

components including virtual functions,

friend functions, pointers, classes,

constructors, destructors and many others.

Table 3. Elements in Improved Halstead

Complexity Metrics

Element or

Indicator in

Improved

Halstead

Programming

Paradigm

distinct operators Hybrid (Procedural,

OOP)

total operators Hybrid (Procedural,

OOP)

distinct unique

operands variables

constants

Hybrid (Procedural,

OOP)

number of

operands variables

constants

Hybrid (Procedural,

OOP)

number of struct

used

Hybrid (Procedural,

OOP)

number of classes OOP

number of

constructors

destructors

OOP

lines of code Hybrid

comment lines Hybrid

friend functions OOP

virtual functions OOP

file pointers Hybrid (Procedural,

OOP)

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

International Manuscript ID : 22296166V7I3201705

Volume 8 Issue 1 January 2018

In this work, the integration of OOP based

ingredients to the classical Halstead

Metrics is proposed and implemented

along with the prevalent objects of

Halstead metrics. Following is the log of

results obtained from the simulation

scenario created and found that the

proposed approach is effectual as

compared to the classical approach of

Halstead metrics.

Objects Evaluation

(

distinct operators (DO) => 5

operators (O) => 8

distinct unique operands (UO) => 5

operands variables constants (OV) => 9

struct(S) => 0

classes (C) => 1

constructors destructors (CD) => 2

lines of code (LOC) => 23

comment lines (CL) => 7

friend functions (FF) => 2

virtual functions (VF) => 0

file pointers (FP) => 0

)

Program Vocabulary (n) => 18

Program Length (N) => 12

Program Difficulty (D) => 8.5

Calculated Program Length (N) => 78.43

Volume (V) => 401.323

Effort (E)=> 124.743

Volume (V) in Improved Halstead Metrics

=> 420.921

Effort (E) in Improved Halstead Metrics

=> 130.383

Execution Time in Classical Approach

(Microseconds) : 0.02312 ms

Execution Time Proposed Approach

(Microseconds) : 0.0182

As per the results, the execution time and

complexity is found less in the proposed

approach and integrity aware results are

projected in terms of program length and

the efforts.

Conclusion

Quality of the source code is an important

task for the software developers rather than

simply generating the compiled code. The

optimization factors are always considered

by the test evaluation of source code and

overall design so that the dependency

factors and related complexities can be

evaluated. The evaluation and optimization

of design is important so that the resource

consuming perspectives can be reduced

and taking care of the important

constituents which are required to execute

the code towards final product. In this

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

International Manuscript ID : 22296166V7I3201705

Volume 8 Issue 1 January 2018

work, the specific focus on the Halstead

metrics is given with the proposed

elements of object oriented paradigms in

the software code evaluations rather than

traditional components. The results found

in the simulation are effectual as compared

to the traditional perspectives.

References

[1] Jiang Y, Cuki B, Menzies T,

Bartlow N. Comparing design and

code metrics for software quality

prediction. InProceedings of the 4th

international workshop on

Predictor models in software

engineering 2008 May 12 (pp. 11-

18). ACM.

[2] Mahmoud SS, Ahmad I. A green

model for sustainable software

engineering. International Journal

of Software Engineering and Its

Applications. 2013 Jul;7(4):55-74.

[3] Abdelzaher TF, Stankovic JA, Lu

C, Zhang R, Lu Y. Feedback

performance control in software

services. IEEE Control Systems.

2003 Jun;23(3):74-90.

[4] Coleman D, Ash D, Lowther B,

Oman P. Using metrics to evaluate

software system maintainability.

Computer. 1994 Aug;27(8):44-9.

[5] Gill GK, Kemerer CF. Cyclomatic

complexity density and software

maintenance productivity. IEEE

transactions on software

engineering. 1991

Dec;17(12):1284-8.

[6] Daly J, Brooks A, Miller J, Roper

M, Wood M. Evaluating

inheritance depth on the

maintainability of object-oriented

software. Empirical Software

Engineering. 1996 Jan 1;1(2):109-

32.

[7] Binkley AB, Schach SR.

Validation of the coupling

dependency metric as a predictor of

run-time failures and maintenance

measures. InSoftware Engineering,

1998. Proceedings of the 1998

International Conference on 1998

Apr 19 (pp. 452-455). IEEE.

[8] Kearney JP, Sedlmeyer RL,

Thompson WB, Gray MA, Adler

MA. Software complexity

measurement. Communications of

the ACM. 1986 Nov

1;29(11):1044-50.

International Journal of Computing and Business Research (IJCBR)

ISSN (Online) : 2229-6166

International Manuscript ID : 22296166V7I3201705

Volume 8 Issue 1 January 2018

[9] Bowes, D., Hall, T., & Petrić, J.

(2017). Software defect prediction:

do different classifiers find the

same defects?. Software Quality

Journal, 1-28.

[10] Arvanitou, E. M.,

Ampatzoglou, A., Chatzigeorgiou,

A., Galster, M., & Avgeriou, P.

(2017). A mapping study on

design-time quality attributes and

metrics. Journal of Systems and

Software, 127, 52-77.

[11] Czech, G., Dorninger, B.,

Pfeiffer, M., Moser, M., & Pichler,

J. (2017). Software Analytics and

Evolution Team Report 2016.

