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Abstract 

Photonic crystals are attractive optical materials for 

controlling and manipulating light flow. One 

dimensional photonic crystals are already in 

widespread use, in the form of thin-film optics, 

with applications from low and high reflection 

coatings on lenses and mirrors to colour changing 

paints and inks. Higher-dimensional photonic 

crystals are of great interest for both fundamental 

and applied research, and the two dimensional ones 

are beginning to find commercial applications. The 

first commercial products involving two-

dimensionally periodic photonic crystals are 

already available in the form of photonic-crystal 

fibers, which use a microscale structure to confine 

light with radically different characteristics 

compared to conventional optical fiber for 

applications in nonlinear devices and guiding 

exotic wavelengths. The three-dimensional 

counterparts are still far from commercialization 

but may offer additional features such as optical 

nonlinearity required for the operation of optical 

transistors used in optical computers, when some 

technological aspects such as manufacturability and 

principal difficulties such as disorder are under 

control. the photonic crystal is not a single crystal 

that spreads over the entire scale, but it is separated 

into many small domains with different crystal 

orientations. As a photonic crystal generally has 

band gaps at different frequencies depending on the 

direction of light propagation, it seems mysterious 

that the scale is observed to be uniformly green 

under an optical microscope despite the multi-

domain structure. 
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Introduction 

A three-dimensional periodic lattice known as a 

photonic crystal has attracted a considerable 

amount of attention for a few decades. Photonic 

crystals have been studied because of the 

fundamental interest in the physical properties of 

light inside such materials, and many studies have 

been carried out to apply their capability of 

controlling the propagation of light to various 

applications such as low-threshold lasers and 

photonic chips. However, it is still difficult to 

fabricate photonic crystals with a period that is 

comparable to the wavelength of light. By contrast, 

some insects are known to possess naturally 

occurring photonic crystals for their colorations; 

weevils are one such group of insects, and 

butterflies are another group that have been 

extensively studied. For example, some species of 

lycaenids (Callophrys rubi, Cyanophrys remus 

and Callophrys dumetorum) and papilionids 

(Parides sesostris and Teinopalpus imperialis) have 

been reported to have a photonic crystal structure 

inside their wing scales. These structures produce 

brilliant structural colours, which are presumably 

thought to serve as a tool for communication. It is 

quite interesting to learn how these natural 

photonic crystals develop and also to consider 

using them as a template for an inorganic photonic 

crystal that has a higher refractive index than 

biomaterials. 

 

Exact identification of photonic crystal structures 

inside butterfly wing scales is a difficult task 

because of the complicated network topology. 

Recently, Michielsen & Stavenga carefully 

compared cross-sectional images of the wing scales 

observed by transmission electron microscopy 

(TEM) with computer-generated patterns assuming 

several structural models. They concluded from the 

reasonable matching in the patterns that the 

photonic crystals of a wing scale have a gyroid-

type structure, which is a type of cubic-structure 

group that consists of two interconnecting channels 

comprising different materials. This structural 

identification has been later confirmed by small-

angle X-ray scattering using synchrotron radiation 

and also by electron tomography. 

 

The photonic crystals inside these wing scales are 

not a single crystal that spreads over the entire 

scale, but they are separated into many small 

domains with different crystal orientations. This 

multi-domain structure can largely affect the 

optical properties of the scale, because a photonic 

crystal generally has band gaps for different 

frequency ranges depending on the direction of 

propagating light. Hence, the wavelength of 

reflection can differ from domain to domain. It has 

been reported for gyroid-type photonic crystals that 

band gaps appear for the frequency ranges along 

the three primary directions of the cubic crystal,  

corresponding to blue, green and violet or 

ultraviolet colours, respectively, with the structural 

parameters obtained for a butterfly. In fact, the 

matte green scales of Cy. remus and Ca. 

dumetorum have been observed to consist of 
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gleaming patches with different colours and 

intensities under an optical microscope. This 

appearance seems consistent with the multi-domain 

structure, where the exposed surfaces of domains 

are characterized by different Miller indices. 

 

Fabrication challenges 

Higher-dimensional photonic crystal fabrication 

faces two major challenges: 

• Making them with enough precision to 

prevent scattering losses blurring the 

crystal properties 

• Designing processes that can robustly 

mass-produce the crystals 

 

One promising fabrication method for two-

dimensionally periodic photonic crystals is 

a photonic-crystal fiber, such as a holey fiber. 

Using fiber draw techniques developed 

for communications fiber it meets these two 

requirements, and photonic crystal fibres are 

commercially available. Another promising method 

for developing two-dimensional photonic crystals 

is the so-called photonic crystal slab. These 

structures consist of a slab of material—such 

as silicon—that can be patterned using techniques 

from the semiconductor industry. Such chips offer 

the potential to combine photonic processing with 

electronic processing on a single chip. 

 

For three dimensional photonic crystals, various 

techniques have been used—

including photolithography and etching techniques 

similar to those used for integrated circuits.Some of 

these techniques are already commercially 

available. To avoid the complex machinery 

of nanotechnological methods, some alternate 

approaches involve growing photonic crystals 

from colloidal crystals as self-assembled structures. 

 

Mass-scale 3D photonic crystal films and fibres can 

now be produced using a shear-assembly technique 

that stacks 200–300 nm colloidal polymer spheres 

into perfect films of fcclattice. Because the 

particles have a softer transparent rubber coating, 

the films can be stretched and molded, tuning the 

photonic bandgaps and producing striking 

structural coloreffects. 

 

Heterostructures on the base of single-crystal 

opal films 

From the practical state point it is very important to 

produce the extended defects in PhC. Such defects 

give rise to propagating modes lying within the 

forbidden PBG. These modes are a crucial element 

in the development of PhCs as waveguides, 

resonant cavities for low-threshold lasers, or as 

other photonic devices. 

 

The controlled formation of states within the 

forbidden gap is to use an extended periodicity, in 

the form of an optical superlattice. The general 

properties of such systems were first described 

theoretically by Russell. Examples have been 

experimentally realized in one-dimensional 

structures, in both semiconductor multilayers and 

in optical fiber gratings. The fabrication of a three-

dimensional optical superlattice structure from 

sequential depositions of silica colloidal crystals by 
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convective self-assembly was obtained in. There 

are single-crystal opal films to fabricate the 

colloidal crystal heterostructures. One of such 

structures made of composed of two different 

single-crystal films with various diameters of 

MSSP. The preferred vertical orientation of the 

crystalline axis is preserved. The reflection spectra 

AB of double-layer opal consisting of single-

crystal films clearly demonstrated the presence of 

different stop-bands as a consequence of stop-band 

superposition of individual compositional colloidal 

crystals.  

 

 

a)                                       b) 

Fig. 1. Reflection spectra of opal-based 

heterostructure assembling from two (solid line 

BA) 

 

There are fabricated structures as thick as three 

layers BAB and ABA. The solid curve BAB shows 

the normal-incidence reflection spectrum of BAB 

three layer heterostructure. The two B sections 

consist of 16 lattice planes of a close-packed face-

centered-cubic (fcc) colloidal single-crystal 

composed of 260-nm diameter spheres. The middle 

A section is 23 planes of an fcc crystal, with sphere 

diameter of 235 nm. 

 

From comparison of spectrum ВА it is possible to 

draw a conclusion that an additional layer 

reinforces the long-range periodicity of the 

superlattice, resulting in significant modifications 

to the observed stop bands. In the three layer 

sample BAB as well as for structure ABA, the 

broad photonic stop bands exhibit pronounced 

modulation. The experimental result provides 

convincing evidence that the observed structure 

does indeed arise from superlattice effects. Thus, 

the controlled formation of states within the 

forbidden gap has obtained due to an extended 

periodicity, in the form of an optical superlattice. 

 

LOW THRESHOLD LASING IN SINGLE-

CRYSTAL FILMS AND 

HETEROSTRUCTURES 

Noble opal samples with crystal sizes greater than 

the beam diameter were obtained by the 

crystallization in suspensions of charged MSSPs. 

Structural defects inevitably present in artificial 

opals introduce disorder that leads to strong 

scattering and random lasing. In such case we have 

observed the appearance of multiple emission lines. 

These lines laid within the region of the maximum 

dye gain, are unrelated to the opal PBG and had 

high threshold intensity I ∼ 13-15 MW/cm
2
.  

 

In contrast, the single-crystal films and three-layer 

opal heterostructures enable to obtain laser 

emission in a relatively narrow solid angle (∼20
0
) 

with a lower threshold intensity of I ∼ 2,5 MW/cm
2
 

for a single-crystal film infiltrated with Rodamin 

6G and I ∼ 0,85 MW/cm
2
 for an heterostructure on 
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of NH3 (2 mg/m3 the PBG spectral shift of the 

diffracted light was about 8 nm. 

 

Conclusion 

The presence of a mobile hydrogen atom in polar 

hydroxyl groups gives rise to the effective 

interaction with the molecules of the gas and liquid 

phases. The estimates show that the ammonia 

molecular monolayer uniformly covering the 

surface of the opal balls gives rise to a change in 

neff in ammonia vapors by ∆neff ≈ 0.004, which 

corresponds to the spectral shift of the center of the 

stop band by about 1 nm. However, it should be 

taken into account that silica balls can consist of 

globules and their specific surface can be larger by 

an order of magnitude, which was not taken into 

account in the estimates. 
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