ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

DETECTION OF DDOS ATTACKS USING DATA MINING

Kanwal Garg ¹, Rshma Chawla ²

¹ Assoc.Prof., M.M. Institute of Computer Technology & Business Management,

M. M. University, Mullana- Ambala.

Email id: gargkanwal@yahoo.com

² Lecturer, M.M. Institute of Computer Technology & Business Management,

M. M. University, Mullana- Ambala.

Email id: rshmabedi@gmail.com

ABSTRACT

Distributed Denial of Service (DDoS) attacks are large-scale cooperative attacks launched from a

large number of compromised hosts called Zombies is a major threat to Internet services. Popular

web sites such as Yahoo, CNN, and Amazon, are among the well-known victims of DDoS

attacks. Large number of companies transacting online are mainly facing the considerable loss as

they are being targeted to DDoS attacks. Therefore, keeping this problem in view author presents

various significant areas where data mining techniques seem to be a strong candidate for

detecting and preventing DDoS attack.

KEY WORD: Distributed Denial of Service attack, Data mining, Zombies.

1. Introduction

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

Today, the number of attacks against large computer systems or networks is growing at a rapid

pace. One of the major threats to cyber security is Distributed Denial-of-Service (DDoS) attack

.In which the victim network element(s) are bombarded with high volume of fictitious attacking

packets originated from a large number of Zombies. The aim of the attack is to overload the

victim and render it incapable of performing normal transactions [Kim.et.al. 2004]. To protect

network servers, network routers and client hosts from becoming the handlers, Zombies and

victims of distributed denial-of-service (DDoS) attacks data mining approach can be adopted as a

sure shot weapon to these attacks.

The recent rapid development in data mining has made available wide variety of algorithms,

drawn from the fields of statistics, pattern recognition, machine learning, and database. These

algorithms made it possible to achieve the ultimate aim of writing this paper. The central theme

of this paper is to explore areas where data mining techniques extensively gathers the audited

data to compute patterns which predict the actual behavior that can be used for detecting or

tracing various DDoS attack.

This paper has been divided into five sections. Section 1 defines the overview of problem

.Section 2 highlights DDoS Attacks. Section 3 portrays a basic idea of data mining. Section 4

highlights some application areas where data mining protect over resources against DDoS

attacks. Section 5 finally concludes by discussing the outcome of study.

2. DDoS Attack

Distributed Denial-of-Service (DDoS) attack is the one in which the victim's network elements

are bombarded with high volume of fictitious attacking packets that originate from a large

number of machines [Kim et.al., 2004]. A successful attack allows the attacker to gain access to

the victim's machine, allowing stealing of sensitive internal data and possibly cause disruption

and denial of service (DoS) in some cases.

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

The number of DDoS attacks grew 20 % last year - a major decrease in the rate of attacks from

2007 to 2008, when these devastating attacks increased 67 percent, according to a report.¹

According to a report Internet Service Providers (ISPs) are most worried about botnet-driven

distributed denial-of-service (DDoS) attacks².DDoS attacks launched by the group Anonymous

took down the Web sites of U.K. record label Ministry of Sound and its legal firm Gallant

Macmillian on 3rd Oct, 2010³ contributes some latest DDoS attacks

Out of the various categories of DoS attacks such as flooding, software exploit, protocol based

etc Distributed Denial of service attack is the most prominent. In fact, DDoS attack uses series of

Zombies to initiate a flood attack against an unsafe single site. DDoS attack is initiated in 2-

phases [Mirkovic and Reiher 2004] [Dietrich et al. 2000] i.e. Recruiting phase and Action phase.

In Recruiting phase attacker initiates the attack from the master computer and tries to find some

slave (Zombies) computers to be involved in the attack. A small piece of software is installed on

the Zombies to run the attacker commands. The Action phase continued through a command

issued from the attacker resides on the master computer toward the Zombies computers to run

their pieces of software. The mission of the piece of software is to send dummy traffic

designated toward the victim. The result is a massive flood of packets that crashes the host or

swamp down the entire network operations shown in Figure 2.1. Very few networks or hosts can

effectively cope with such a scale of attacks today. Most of the handler and Zombie are

completely unaware of the fact that they were being used for launching of a DDoS attack.

Numbers of mechanisms are given to either defend or prevent against DDOS attacks such as

starting from increasing the resourced at defender side, implementing authentication policies at

routers, filters, firewalls with hardware security appliances, Learning based mechanisms, agents

based detection at host level or at immediate level etc but none of them has proved to be the best,

addressing all the challenges and still there exist a gap amongst the security requirements &

1 http://www.darkreading.com/security-services/167801101/security/perimeter-security/222301511/index.html

http://www.csoonline.com/article/518514/report-isps-fear-many-more-ddos-attacks-in-2010

³ http://news.cnet.com/8301-1009_3-20018427-83.html

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

existing mechanisms. Therefore, a mechanism that is strong and reliable is desired. Hence the key idea is to use data mining techniques to discover consistent and useful patterns of system features that describe program and user behavior of attack.

3. Data Mining

Data mining is becoming a persistent technology in activities as diverse as using historical data to predict the success of a marketing campaign, looking for patterns in network traffic to discover illegal activities or analyzing sequences [Sundari and Thangadura, 2010]. From this outlook, the approach is gaining importance in the field of DDoS attacks.

Figure 2.1: Architecture of DDoS attack⁴

Data mining is, at its core, pattern finding. Data miners are proficient at using specialized software to find regularity (and irregularities) in large & complex data sets. Data mining

_

⁴ Source: http://www.fnokd.com/wp-content/uploads/2007/08/ddos attack.gif

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

applications are computer software programs or packages that enable the extraction and

identification of patterns from stored data.⁵ A data mining application is typically a software

interface which interacts with a large database containing Network traffic parameters or other

important data. Data mining is widely used by companies and public bodies for marketing,

detection of fraudulent activities such as DDoS attacks.

4. Various Application areas of Data mining in DDoS attacks

Recently, data mining has become an important component for DDoS attack prevention.

Different data mining approaches like classification, association rule, clustering, and outlier

detection are the few techniques frequently used to analyze network traffic or data to gain

knowledge that helps in controlling intrusion. Various applications where data mining approach

can be used in prevention and detection of DDoS attacks are discuss below:

4.1 Intrusion Detection

Intrusion detection is the process of observing the events occurring in a computer system or

network and analyzing them for instances which violates related security policies or practices.

Intrusion detection techniques can be classified as misuse detection and anomaly detection.

Misuse detection systems, e.g., IDIOT [Kumar and Spafford, 1995] and STAT [Ilgun et.al.,

1995], use patterns of well-known attacks or weak spots of the system to match and identify

known intrusions. Anomaly detection systems, e.g., IDES [Lunt et. al., 1992] flag observed

activities that deviate significantly from the established normal usage profiles as anomalies, i.e.,

possible intrusions. Today the main reason of using Data Mining for intrusion detection systems

is the enormous volume of existing and newly appearing network data that requires processing.

Literature also provides evidence where data mining techniques are used for intrusion detection.

⁵ http://www.wisegeek.com/what-are-data-mining-applications.htm

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

Various applications where data mining approach can be used in Intrusion detection of DDoS

attacks are discussed here:

An overview of real time data mining-based intrusion detection systems (IDSs) is presented by

researcher that focused on problems related to deploying a data mining-based IDS in a real time

environment also discussed a distributed architecture for estimating cost-sensitive models in real

time. Adaptive learning algorithms are used to improve usability that facilitates model creation

and incremental update. Unsupervised anomaly detection algorithms are used to reduce the

reliance on labeled data. Author [Lee et. al., 2002] gives an architecture consisting of sensors,

detectors, a data warehouse, and model generation components. Presented architecture facilitates

the sharing and storage of audit data and the distribution of new or updated models which

improves the efficiency and scalability of the IDS.

Another similar example of Intrusion detector has been countered by [Brahmi et.al. 2010] which

explains that it is a novel distributed multi-agent IDS architecture, called MAD-IDS. MAD-IDS

integrate the mobile agent methodology and the data mining techniques to accommodate the

special requirements in distributing IDS. Author expressed that the data mining techniques and in

particular the unsupervised clustering algorithm and the generic association rule mining are

capable of discovering anomalous connections, as well as, generating an informative summarize.

The last result of this architecture is to the point and intuitive detection rules that can be

periodically supplied to the Misuse Detection Agent to update its signature database allowing the

detection of known attacks.

Author described an experimental system, based on the Common Intrusion Detection Framework

(CIDF), where multiple IDSs can exchange attack related information to detect distributed

interruptions. Above system also comprises an ID model builder, where a data mining engine can

receive audit data of a novel attack from an IDS, compute a new detection model, and then

distribute it to other IDSs[Lee et.al. 2000].

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

[John et.al, 2007] builds a Fuzzy Intrusion Recognition Engine (FIRE), which is an anomaly-

based intrusion detection system that uses fuzzy logic to evaluate whether malevolent activity is

taking place on a network. The FIRE system applies basic data mining techniques to TCP packet

data for extracting metrics that are not obvious in the raw data. These metrics are then evaluated

as fuzzy sets.

DDoS attack detection model presented by [Zhong et.al. 2010] was based on data mining

algorithm. FCM cluster algorithm and Apriori association algorithm used to extracts network

traffic model and network packet protocol status model. Here threshold is set for detection

model. There are many other IDSs & detection systems where data mining techniques were

applied. Now we are moving towards other application area i.e. IP Traceback describes in next

section.

IP Traceback 4.2

DDoS is rapidly growing problem. IP Traceback is the ability to trace IP packets from source to

destination. This is a significant step towards identifying and thus stopping attackers. The IP

Traceback is an important mechanism in defending against DDoS attacks. Lot of techniques and

methodologies are used to trace the DDoS attacks. Some are given below:

An approach suggested by [Sager 1998] and [Stone 2000] is called 'Logging' that is to log

packets at key routers and then use data mining techniques to determine the path that the packets

traversed. This scheme has the functional property that it can trace an attack long after the attack

has completed. However, it also has obvious drawbacks, including potentially enormous resource

requirements (possibly addressed by sampling) and a large scale inter provider database

integration problem.

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

The data mining techniques are providing very efficient way for discovering useful knowledge

from the available information. [Nalavade and Meshram 2010] proposed a system which uses

packet marking mechanisms along with Intrusion Prevention Systems for efficient IP traceback.

Above author considers that data mining techniques can be applied to the data collected from the

packet marking scheme for detecting attack and therefore, resultant database of knowledge can

be further used by network Intrusion prevention systems for decision making.

5. Conclusion

DDoS attacks are quite complex methods of attacking a computer network, ISP, Individual

system make it ineffectual to legitimate network users. These attacks are an aggravation at a

minimum, and if they are against a particular system, they can be brutally destroying. Loss of

network resources costs money, delays work, and interrupts communication between various

legal network users. The drastic consequences of a DDoS attack make it important that strict and

productive solutions and security measures must be made to prevent these types of attacks.

Detecting, preventing, and mitigating DDoS attacks is important for national and individual

security. This paper discussed various detection algorithms which are using data mining concepts

& algorithms for DDoS detection & prevention. But with the improvement in technology new

areas are emerging where data mining techniques can be utilized for handling DDoS attacks that

are to be discuss in future.

References

[1] T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. Neumann, H. Javitz, A. Valdes, and

T. Garvey. "A real-time intrusion detection expert system (IDES)" - final technical

report. Technical report, Computer Science Laboratory, SRI International, Menlo Park,

California, February 1992.

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

- [2] Yoohwan Kim, Wing Cheong Lau, Mooi Choo Chuah And Jonathan H. Chao "Packetscore: Statistical-Based Overload Control Against Distributed Denial-Of-Service Attacks" IEEE INFOCOM 2004, The 23rd Annual Joint Conference of the IEEE Computer and Communications Societies, Hong Kong, China, March 7-11, 2004. IEEE, 2004.
- [3] K. Ilgun, R. A. Kemmerer, and P. A. Porras. "State transition analysis: A rulebased intrusion detection approach". IEEE Transactions on Software Engineering, 21(3):181– 199, March 1995
- [4] Wenke Lee, Rahul A. Nimbalkar, Kam K. Yee, Sunil B. Patil, Pragneshkumar H. Desai, Thuan T. Tran, and Salvatore J. Stolfo "A Data Mining and CIDF Based Approach for Detecting Novel and Distributed Intrusions" RAID 2000, LNCS 1907, pp. 49–65, 2000. c_Springer-Verlag Berlin Heidelberg 2000
- [5] John E. Dickerson, and Julie A. Dickerson "Fuzzy Network Profiling for Intrusion Detection" Electrical and Computer Engineering Department Iowa State University Ames, Iowa, 50011
- [6] S. Kumar and E. H. Spafford. "A software architecture to support misuse intrusion detection". In Proceedings of the 18th National Information Security Conference, pages 194–204, 1995.
- [7] P. Chatterjee, D. Joffman, and T. Novak. "Modeling the clickstream: Implications for Web-based advertising efforts," Marketing Science. 22, pp. 520-541 (2003).
- [8] Rui Zhong, and Guangxue Yue "DDoS Detection System Based on Data Mining" ISBN 978-952-5726-09-1 (Print) Proceedings of the Second International Symposium on Networking and Network Security (ISNNS '10)Jinggangshan, P. R. China, 2-4, April.2010, pp. 062-065
- [9] G. Sager, "Security Fun with OCxmon and cflowd," presented at the Internet 2 Working Group, Nov. 1998.
- [10] R. Stone, "CenterTrack: An IP overlay network for tracking DoS floods," in Proc. 2000 USENIX Security Symp., pp.199–212, July 2000.

ISSN (Online): 2229-6166

Volume 2 Issue 1 2011

- [11] J. Mirkovic and P. Reiher, "A Taxonomy of DDoS Attack and DDoS Defense Mechanisms," ACM SIGCOMM Computer Communications Review, Volume 34, Number 2, April 2004, pp. 39-53.
- [12] Dietrich, S., Long, N., and Dittrich, D. 2000. Analyzing distributed denial of service attack tools: The shaft case. In Proceedings of 14th Systems Administration Conference. New Orleans, Louisiana, USA, 329-339.
- [13] Wenke Lee, Salvatore J. Stolfo, Philip K. Chan Eleazar Eskin, Wei Fan, Matthew Miller, Shlomo Hershkop and Junxin Zhang "Real Time Data Mining-based Intrusion Detection" 2002, ieexlore. ieee.org.
- [14] Imen Brahmi, Sadok Ben Yahia, and Pascal Poncelet "MAD-IDS: Novel Intrusion Detection System using Mobile Agents and Data Mining Approaches" In intelligent & security informatics, 2010-springer.
- [15] P.Sundari, Dr.K.Thangadurai "An Empirical Study on Data Mining Applications" Global Journal of Computer Science and Technology, Vol. 10 Issue 5 Ver. 1.0 pp23-27 July 2010