
International Journal of Computing & Business Research ISSN (Online): 2229-6166

Proceedings of ‘I-Society 2012’ at GKU, Talwandi Sabo Bathinda (Punjab)

Performance Analysis of Software
Transaction Memory Techniques

*Varun Jasuja, **Amit Sandhu, ***Kiran
*Assistant Professor, Deptt. of Computer Science & Engineering

Punjab College Of Engg And Tech.,Lalru Mandi(Punjab), varunjasuja@yahoo.co.in
**Assistant Professor, Deptt. of Computer Science & Engineering

Arni School of Technology, Arni University, Kathgarh(HP), sandhuamit80@yahoo.com
***Student at IGNOU, New Delhi

Abstract: Software Transactional Memory is generic non blocking synchronization construct that enables
automatic conversion of sequential objects into correct concurrent objects. Because it is nonblocking, STM
avoids traditional performance and correctness problems due to thread failures, preemption, page faults and
priority inversion. The advent of multicore processors has put the performance of traditional parallel
programming techniques in question. The traditional lock-based parallel programming techniques are error
prone and suffer from various problems such as deadlock, live-locks, priority inversions etc. In This paper we
paper we present some of the Software Transactional Memory technique.
Keywords: Multiprocessor, Concurrency, Synchron- - ization, Transactional Memory

I INTRODUCTION

Computer system with a single processor has almost reached their limits. In the last decade,

we saw incredible improvement in CPU design and performance. In the beginning of

nineties, there were CPUs with on million transistors(e.g. Intel 336) and in 2003.there were

CPUs with one billion transistors(e.g. Intel Itanium),which is an improvement of

1000x.CPUs with mode transistors have mode hardware units and much mode efficient, but

now they are running into problem which will prevent their future improvement. for example,

more transistors spend much more electricity and they heat the die more. Today’s CPUs

dissipate the same amount of energy on a square millimeter as the burner while cooking

coffee. Other problem is that if we increase the clock frequency two time, CPU speed will

increase 1.3 times and dissipation will be increased 4 times. The locking mechanism and

mutual exclusion have been used to achieve this synchronization. However, it may create

performance bottle-necks, and it is more time consuming and vulnerable to the errors.

Conventional parallel programming synchronization mechanism , such as locks, monitors and

semaphores are exceptionally difficult to program correctly Transactional Memory allows

data sharing without using locking mechanisms. The Transactional Memory can be

implemented in software as well as in hardware. It commits the data in atomic code

sequences called Transactions. Before committing a transaction it checks whether the data

International Journal of Computing & Business Research ISSN (Online): 2229-6166

Proceedings of ‘I-Society 2012’ at GKU, Talwandi Sabo Bathinda (Punjab)

which it read was not outdated or changed by another transaction. When there is a read/ write

conflict, it aborts the transaction and rolls back and process the transaction again until it has

no conflict. So in this procedure, Transactional Memory maintains a log for each transaction

so that it would go back to its previous state. Software Transactional Memory has a flexible

framework for executing parallel operations with contention manager for resolving the

conflicts and load balancing. Transactions have been used a lot in databases since long ago

and it do not suffer from resource starvation and deadlocks.

II SOFTWARE TRANSACTIONAL MEMORY CONCEPTS

A memory transaction is basically a finite sequence of instructions, preserving the

serializability and atomicity properties.

Transactions in Database Programming

Transactions have long been a part of database programming while their importance is now

realized in parallel programming. Database Systems allow multiple queries to run in parallel

and it maintains concurrency with consistency. In other words, if a concurrent transaction is

left in an illegal state, then it is aborted and rolled back.

Database Transaction Properties

A transaction is a set of instructions which are basically one unit. It has proper start and end

with consistent results. A particular database transaction has four basic properties: Atomicity,

Consistency, Isolation and Durability also known as ACID, to ensure that transactions take

place with correctness.

1. Atomicity: Atomicity means that a transactions either successfully completes or it fails and

roll back. On successful completion it commits its results and on failure it aborts.

2. Consistency: Consistency means that modification will not alter the structure being

modified in an inconsistent way;that is , all modifications preserve the underlying structure of

object being modified.

3. Isolation: Isolation is a property which makes sure that each transaction can execute in

parallel independently and its internal execution and data should be isolated and hidden from

other transactions and failure of one transaction may not affect the result of other

transactions.

International Journal of Computing & Business Research ISSN (Online): 2229-6166

Proceedings of ‘I-Society 2012’ at GKU, Talwandi Sabo Bathinda (Punjab)

4. Durability: Durability implies once committed the changes persist , or that once aborted no

residue of partial transitional will remain.

III HARDWARE TRANSACTIONAL MEMORY CONCEPTS

The operation sets a memory location to a new value, but only if currently contains a

specified executed value.The basic algorithm CompareAndSwap implements a shown in

figure.

ComapreAndSwap (a: WordAddress, old: Word, new: Word) :Bool

1 if *a=old

2 then *a new

3 return True

4 else return False

CompareAndSwap

ComapreANDSwap is executed in one machine instruction,operating on the specified address

automically.This seems to be simple,and not very useful instruction and is expressive enough

to create arbitrarily complicated non-blocking algorithms.Also,

The other important primitive commonly available on modern processors is part of

instructions LoadLinked and StoreConditional .LoadLinked loads a value from memory and

“locks” it,such that a following StoreConditional instructions to the same memory location

will only succeed if memory location read in LoadLinked step has not been modified by

some other memory operation.

LoadLinked (r:Register ,a: WordAddress)

1 r  *a

2 Linked(a)  True

StoreConditional (r:register ,a: WordAddress)

1 if Linked(a) =True

2 then *a  r

3 r  1

4 else r  0

International Journal of Computing & Business Research ISSN (Online): 2229-6166

Proceedings of ‘I-Society 2012’ at GKU, Talwandi Sabo Bathinda (Punjab)

LoadLinked and StoreConditional

Conventional Methods

Achieving Synchronization in Parallel Applications

Parallel applications share data and the traditional mechanism to achieve synchronization has

been a locking mechanism. Locking uses mutexes, semaphores etc. to ensure mutual

exclusion in resource sharing. Figure shows a code in which the variable counter is accessed

exclusively using a locking mechanism.

Lock ()

{

// shared variable counter

counter++;

}

Unlock ()

Fig. A Shared variable with Lock.

Locking ensures mutual access to the shared data but it creates a bottleneck for other threads

or parallel processes. Other processes have to wait until the thread which is holding the lock

completes its execution. Blocking a process can lead to the following problems .

Priority Inversion: Priority inversion takes place when a lower priority process is holding a

resource which is required by a higher priority process, which makes the higher priority

process wait until resource is released.

Convoying: Convoying takes place when a process holding a lock is re-scheduled due to the

different reasons, such as, if the process has consumed its processing quantum of time and yet

not completed its execution, may be due to the page fault or due to some other interference.

Meanwhile other threads waiting in queue to acquire the lock will not be able to progress

ahead until this thread release the lock. Even if the lock is released, it will take some time to

re-set the queue, which as a result will slow down the processing.

Deadlock and Livelock: A deadlock is a situation where one or more processes are waiting

for each other to release a resource and this situation lead to a circular chain of wait with no

progress taking place on part of each process.

On the other hand, livelock does not wait for anything but keeps on processing based on the

erroneous input. A good example of the livelock can be endless loop. It is analogous to the

deadlock that no real progress is made ahead yet differs in a sense that no process is blocked

or waiting for any resource.

International Journal of Computing & Business Research ISSN (Online): 2229-6166

Proceedings of ‘I-Society 2012’ at GKU, Talwandi Sabo Bathinda (Punjab)

Wait-Freedom:This property of the non-blocking system allows each process to progress

without taking the contention into the context. Wait-freedom infact ensures that there would

not be any starvation. However practically its not possible to develop efficient wait-free

algorithms in parallel applications as the memory cost increases linearly with the number of

processes. Therefore not much attention has been paid in this regard.

Lock-Freedom: The Lock-freedom ensures that multiple processes run at the same time but

only one process goes ahead and completes its execution within finite number of execution

time. The rest of the processes have to wait. The Lock-freedom ensures deadlock prevention

but suffers from starvation. In lock-freedom, every process try to complete its execution but

when it identify that original values have been changed by another process then it rolls-back

and starts its processing again based on new values.

Obstruction-Freedom:An algorithm is obstruction-free if it allows completing a process

only if it is not obstructed by another process. This is a very weak property of a non-blocking

algorithm as it is hardly possible that another process will not contend the currently executing

process. Furthermore, Obstruction-free algorithm introduces the problem of

livelock.Therefore to avoid livelock and deadlock, roll-back is used. Moreover, a contention

manager can be used to decide which processes have higher priority and based on the priority

level higher priority process is allowed to execute while lower priority processes are

obstructed.

Software Transactional Memory

Systems

Synchronization

STM (Shavit, Touitou) Lock-free

WSTM (Fraser, Harris) Lock-free

OSTM (Fraser) Lock-free

DSTM (Herlihy et al) Obstruction-free

RSTM (Marathe) Obstruction-free

Time based STM (Riegel) Obstruction-free

DSTM 2 (Herlihy OOPSLA) Obstruction-free

McRT-STM (Saha et al) Lock-based

TL2 (Dave Dice, Ori Shalev, Nir Shavit) Lock-based

HybridTM (Kumar) Hybrid TM

PhTM (Lev) Hybrid TM

SigTM (Chi Cao Minh) Hybrid TM

International Journal of Computing & Business Research ISSN (Online): 2229-6166

Proceedings of ‘I-Society 2012’ at GKU, Talwandi Sabo Bathinda (Punjab)

IV SOFTWARE TRANSACTIONAL MEMORY (STM)

The STM system proposed by Shavit and Touitou identifies and tries to get access of all the

memory locations which it would need for a particular transaction. The basic unit of memory,

on which this system is based on, is word. In other words, the transaction granularity is at

word level. The basic design features of Shavit and Touitou’s STM are shown in table When

a transaction holds the control of memory word, it becomes the owner of that memory word.

STM

Synchronization Non-blocking (Lock-freedom)

Concurrency Control Pessimistic

Conflict Detection level (Granularity) Word

Update Strategy Direct Update

Conflict Detection Early

Conflict Management Strategy Helping

Nested Transaction Type N/A

The Basic Design features of STM.

The ownership record either has a valid address of the owner or it has a Null value which

indicates that no transaction owns the data. Although each transaction can access shared data,

but one memory block can be owned by only one transaction at a time If a transaction fails to

acquire ownership of a memory object then it aborts and releases the memory locations which

it already has acquired. If a transaction manages to take all the desired memory locations then

it completes its execution and updates the results without the risk of rollback. This implies

that system uses the Direct Update approach.

Design Limitations

One of the major draw back which Shavit and Touitou’s system have is its helping

mechanism for conflict resolution. This conflict resolution technique is based on the concept

that if a transaction can not proceed ahead due to some conflict then it should help other

transaction in their completion. In this case two threads are executing the same transaction.

This means that if transaction X found that it is conflicting with transaction Y then

transaction X makes update on behalf of transaction Y.

In recursive helping a transaction being helped may be helping another transaction.

Moreover, consistent helping can deteriorate the performance by unnecessary

International Journal of Computing & Business Research ISSN (Online): 2229-6166

Proceedings of ‘I-Society 2012’ at GKU, Talwandi Sabo Bathinda (Punjab)

conflicts.However, in Shavit’s STM, helping is restricted to a specific level only; even then it

leads to a great level of complexity, as it exposes data to one or more threads. One of the

limitations this system, includes the advance declaration of the memory locations that a

transaction will acquire. This restricts the transaction from acquiring a memory location

dynamically.However, recent versions of the STM can acquire the memory locations

dynamically e.g. Hash table based STM developed by Harris and Fraser .

V SIGNATURE ACCELERATED TRANSACTIONAL MEMORY (SIGTM)

Cao Minh et al. presented Signature Accelerated Transactional Memory, SigTM in 2007. The

SigTM is a Hybrid Transactional Memory system. The SigTM uses hardware signatures to

keep track of read-set and write-set and help in conflict detection. The signatures are

basically data structures that can store the data access information of the transactions. A

SigTM signature is shown in table.However, data versioning information is stored in software

part of the system. The signature data-structure in SigTM does not require any modification

to the hardware caches which reduce the hardware cost. The SigTM supports nested

transactions and strong isolation [48]. It utilizes the strong isolation and performance

characteristics of HTM with low cost and flexibility of the STM.

SigTM

Synchronization Non-blocking

Concurrency Control Optimistic

Conflict Detection level (Granularity) Cache line/ Word

Update Strategy Deferred Update

Conflict Detection Strategy Late

Conflict Management Aborting

Nested Transaction Type Supported

Isolation Strong

The Basic Design features of SigTM.

International Journal of Computing & Business Research ISSN (Online): 2229-6166

Proceedings of ‘I-Society 2012’ at GKU, Talwandi Sabo Bathinda (Punjab)

Design Details

The SigTM uses hardware signatures for conflict detection and strong isolation by looking up

coherence requests. While other functionality, i.e., transactional versioning, commit and

rollback are dealt in software part. The SigTM uses TL2 as STM part of Hybrid TM

system.The TL2 is locked based STM using optimistic concurrency control with granularity

at word level and works fine for range of contention scenarios. The TL2 uses global version

clock to generate time stamps for the data versioning. The STM transactions are slower than

the HTM transactions due to the versioning and conflict detection overhead. Every word

read, must be re-validated for its time stamp while committing a transaction. However, the

SigTM eliminates the global version clock and locking mechanism in the base STM.

Moreover, it eliminates the need for software read-set. However software write-set is still

required to store the transactional updates, until the transaction commits. The SigTM does not

require to switch between STM and HTM

Instruction Instruction Description

rsSigReset

wsSigReset

Reset all bits in read-set or write-set signature

rsSigInsert r1

wsSigInsert r1

Insert the address in register r1 in the read-set or write-

set signature

rsSigMember r1,r2

wsSigMember r1,r2

Set register r2 to 1 if the address in register r1 hits in

the read-set or write-set signature

rsSigSave r1

wsSigSave r1

Save a portion of the read-set or write-set signature into

register r1

rsSigRestore r1

wsSigRestore r1

Restore a portion of the read-set or write-set signature

from register r1

fetchEx r1 Pre-fetch address in register r1 in exclusive state; if

address in cache, upgrade to exclusive state if needed

The Signature in SigTM

The contention management in SigTM is analogous to the base STM, i.e., TL2. A conflicting

transaction is backed-off and retried after a delay. And when a transaction is repeatedly

backed-off then it is eventually aborted. The SigTM implements lazy data versioning and

International Journal of Computing & Business Research ISSN (Online): 2229-6166

Proceedings of ‘I-Society 2012’ at GKU, Talwandi Sabo Bathinda (Punjab)

transactional updates are buffered until the transaction commit. Moreover, the operating

system may also suspend a SigTM transaction.

Eagar data Versioning

Because of its TL2 heritage, SigTm implements lazy data versioning. Trasactional are

buffered in the write-set until transaction commit. Alternatively we could start with the eagar

versioning. Writes within transaction update memory location in place, logging the original

value in an undo log in case of abort. Since SigTM implements data versioning in software,

no hardware changes to support eagar-based scheme.

Design Limitations

The SigTM used hardware signatures to track the read-set and write-set while reducing the

overhead of Software transactions. Moreover, signature data structure makes the

implementation of nested transactions easy. One of the major performance challenges faced

by SigTM is the in-exact nature of the signatures. Therefore, it is hard to find that what

operations are taking place in read-sets and write-sets. This in-exact nature of signatures, lead

to false conflict detection. Using,such off-the-shelf hardware for data access tracking, in

place of signatures can over-come the deficiencies introduced by signatures.

The Algorthm For Basic Function in the Signature Software Trasactional Memory Technique

is given presented below

1. SIGTMTXSTART

checkpoint()

enableRSlookup(exclusive)

2. SIGTMWRITERBARRIER(addr,data)

wsSigInsert(addr)

writeSet.insert(addr,data)

3. SIGTMREADBARRIER(addr)

If wsSigMember(addr) and writeset.member(addr)

then

Return writeSet.lookup(addr)

[End of if structure]

rsSigInsert(addr)

International Journal of Computing & Business Research ISSN (Online): 2229-6166

Proceedings of ‘I-Society 2012’ at GKU, Talwandi Sabo Bathinda (Punjab)

Return Memory[addr]

4. SIGTMTXCOMMIT

enableWSlookup(exclsive,shared)

Repeat step 5 while addr!=null in writeSet

5. fetchEx(addr)

enableWSnack(exclusive,shared)

rsSigReset()

disableRSlookup()

[End of Step 4 loop]

6. Repeat step 7 while addr!=null in writeSet

7. Memory[addr]=writeSetLookup(addr)

wsSigReset()

disableWSnack()

[End of Step 6 loop]

8. Exit

Graph for the performance showing no. of barrier used by execution of same instruction set

by STM and SigTM

Graph for showing cputime taken by STM, HTM,SigTM in delaunay algorithm

Instruction Count

0

10

20

30

40

50

60

70

80

90

100

Read Barrier Write Barrier Commit Barrier

Barrier

N
o

O
f C

ou
nt

STM SigTm

delaunay

0

1

2

3

4

5

6

7

8

9

10

1 2 4 8 16
CPU TIME

SPEEDUP

HTM STM SigTM

International Journal of Computing & Business Research ISSN (Online): 2229-6166

Proceedings of ‘I-Society 2012’ at GKU, Talwandi Sabo Bathinda (Punjab)

V Conclusion

Although a substantial amount of research has been carried-out in last one and half decade

regarding Transactional Memory systems, there are still many overheads and problems that

need to be further researched and investigated. This survey identifies the following areas

Achieving Strong Isolation, Nested Transactions, Integration Overheads for future research

with regards to the implementation of Software Transactional Memory systems.

Reference

[1] Abadi, M., Harris, T., and Mehrara, M. Transactional memory with strong atomicity

using off-the-shelf memory protection hardware. In Proceedings of the 14th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, Raleigh, NC, USA. PPoPP

'09. ACM, New York, NY, February 2009. DOI=

http://doi.acm.org/10.1145/1504176.1504203.

[2] Ennals, R. Software transactional memory should not be obstruction-free. Technical

Report Nr. IRC-TR-06-052. Intel Research Cambridge Tech Report, 2006.

[3] Marathe, V. J. and Scott, M. L. A Qualitative Survey of Modern Software Transactional

Memory Systems. Technical Report Nr. TR 839, University of Rochester Computer Science

Dept., 2004.

[4] Larus, J. R. and Rajwar, R. Transactional Memory.

[5] Minh, C. C., Trautmann, M., Chung, J., McDonald, A., Bronson, N., Casper, J.,

Kozyrakis, C., and Olukotun, K.An effective hybrid transactional memory system with strong

isolation guarantees. SIGARCH Comput. Archit. News, June 2007. DOI=

http://doi.acm.org/10.1145/1273440.1250673

